留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于五孔探针的大S弯进气道总压畸变测量与评估

徐诸霖 高荣钊 达兴亚

徐诸霖, 高荣钊, 达兴亚. 基于五孔探针的大S弯进气道总压畸变测量与评估[J]. 实验流体力学, 2018, 32(4): 78-86. doi: 10.11729/syltlx20170130
引用本文: 徐诸霖, 高荣钊, 达兴亚. 基于五孔探针的大S弯进气道总压畸变测量与评估[J]. 实验流体力学, 2018, 32(4): 78-86. doi: 10.11729/syltlx20170130
Xu Zhulin, Gao Rongzhao, Da Xingya. Assessment and measurement of total pressure distortion based on five-hole-probe for S-shaped inlet[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 78-86. doi: 10.11729/syltlx20170130
Citation: Xu Zhulin, Gao Rongzhao, Da Xingya. Assessment and measurement of total pressure distortion based on five-hole-probe for S-shaped inlet[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 78-86. doi: 10.11729/syltlx20170130

基于五孔探针的大S弯进气道总压畸变测量与评估

doi: 10.11729/syltlx20170130
详细信息
    作者简介:

    徐诸霖(1992-), 男, 重庆万州人, 硕士, 助理工程师。研究方向:推进/机体一体化。通信地址:四川省绵阳市二环路南段6号(621000)。E-mail:527272198@qq.com

    通讯作者:

    达兴亚, E-mail:dxingya@163.com

  • 中图分类号: V211.48

Assessment and measurement of total pressure distortion based on five-hole-probe for S-shaped inlet

  • 摘要: 进气道总压畸变的测量与评定是进气道/发动机一体化的重要内容。大S弯进气道具备出色的隐身性能,但其出口流场非常复杂,传统总压测量方法造成的误差显著增大,进而引起总压畸变评估误差,阻碍进/发一体化设计。为了提高大S弯进气道的总压畸变测量与评估的准确性,本文提出了一套基于五孔探针的测量方法。分析测量结果表明:分区拟合方法更能适应大S弯进气道强旋流场的总压数据处理;随着马赫数从0.2增加到0.6,周向总压畸变指数从0.005左右递增到0.09左右,径向总压畸变指数最大不超过0.055,马赫数越大,总压畸变越剧烈,周向总压畸变占据主导;出口截面主要总压畸变区的总压恢复系数最低不到0.85;相比数值计算、总压耙测量,五孔探针测得结果更加全面、合理。
  • 图  1  五孔探针测量段示意图

    Figure  1.  Five-hole-probe measurement

    图  2  L型五孔探针[21]

    Figure  2.  L-shaped five-hole-probe[21]

    图  3  探针校准装置

    Figure  3.  L-shaped five-hole-probe calibration

    图  4  等直段中截面流场校核结果(马赫数0.5)

    Figure  4.  Results of calibration(Ma=0.5)

    图  5  等直段中截面流场校核结果(马赫数0.6)

    Figure  5.  Results of calibration(Ma=0.6)

    图  6  五孔探针测量试验流程

    Figure  6.  Flow chart of the measurement by five-hole-probe

    图  7  马赫数试验阶梯

    Figure  7.  Ladder of changing Mach number

    图  8  进气道流线图(Ma=0.5)

    Figure  8.  Streamline graph of inlet (Ma=0.5)

    图  9  内部截面旋流图(Ma=0.5)

    Figure  9.  Swirl contours of internal sections (Ma=0.5)

    图  10  测量点位置

    Figure  10.  Positions of measurement

    图  11  第4环170°角位置结果(LLS)

    Figure  11.  LLS results at 170° in 4th ring

    图  12  测量总压对比图谱

    Figure  12.  Contour of total pressure by measurement

    图  13  数值计算总压图谱(Ma=0.5)

    Figure  13.  Contour of total pressure by numerical calculation(Ma=0.5)

    图  14  第4环170°角位置处理结果(SF)

    Figure  14.  SF results at 170° in 4th ring

    图  15  SF总压畸变图谱

    Figure  15.  Contour of total pressure distortion by SF method

    图  16  周向总压畸变参数示意图

    Figure  16.  Parameters of total pressure circumferential distortion

    图  17  径向总压畸变参数示意图

    Figure  17.  Parameters of total pressure radial distortion

    图  18  总压畸变指数对比

    Figure  18.  Coefficient of DPCPavg and DPRPmax

    图  19  周向总压分布(马赫数0.5)

    Figure  19.  Curves of circumferential total pressure(Ma=0.5)

    图  20  总压恢复系数

    Figure  20.  Coefficient of PR

    表  1  LLS方法结果

    Table  1.   LLS results

    ring 1 2 3 4 5
    Pitch/(°) -33.408 -28.496 -17.936 -3377.420 7.654
    Yaw/(°) -4.949 -23.493 -49.459 115.071 -42.099
    Cone/(°) 33.730 36.293 51.800 71.820 42.661
    Roll/(°) -98.938 -132.335 -165.244 17.564 171.615
    pt/Pa 88312.7 86932.7 85204.2 65674.4 83000.8
    ps/Pa 85256.7 84466.9 83228.9 54878.2 82311.1
    Ma 0.225 0.203 0.183 0.513 0.109
    下载: 导出CSV
  • [1] Yang H, Li F, Song Y Y, et al. Numerical investigation of Electrohydrodynamic(EHD) flow control in an S-shaped duct[J]. Plasma Science and Technology, 2012, 14(10):897-904. doi: 10.1088/1009-0630/14/10/08
    [2] Da X Y, Fan Z L, Fan J C, et al. Microjet flow control in an ultra-compact serpentine inlet[J]. Chinese Journal of Aeronautics, 2015, 28(5):1381-1390. doi: 10.1016/j.cja.2015.07.008
    [3] 屠宝锋, 胡骏, 张凯.对涡旋流影响压气机转子性能和稳定性的研究[J].推进技术, 2016, 37(4):640-645. http://d.old.wanfangdata.com.cn/Periodical/tjjs201604006

    Tu B F, Hu J, Zhang K. Effects of twin swirl on performance and stability of compressor rotor[J]. Journal of Propulsion Technology, 2016, 37(4):640-645. http://d.old.wanfangdata.com.cn/Periodical/tjjs201604006
    [4] Beale D K, Zelenak M. Development and validation of a free jet technique for inlet-engine compatibility testing[R]. AIAA-1992-3921, 1992.
    [5] Kimzey W F. An investigation and calibration of a device for the generation of turbulent flow at the inlet of a turbojet engine[R]. AEDC-TR-65-195, 1965.
    [6] Oates G C, Sherman D A, Motycka D L. Experimental study of inlet-generated pressure fluctuations[R]. AFAPL-TR-70-103, 1970.
    [7] Plourde G A, Brimelow B. Pressure fluctuations cause compressor instability[R]. AFAPL-TR-70-103, 1970.
    [8] Younghans J L, Moore M T, Collins T P, et al. Inlet flow field simulation techniques for engine/compressor testing[R]. AIAA-970-591, 1970.
    [9] Anderson R E. Aircraft engine inlet pressure distortion testing in a ground test facility[R]. AIAA-1983-1233, 1983.
    [10] Kutschenreuter P H, Collins T P, Vier I W. P 3G-a new dynamic distortion generator[R]. AIAA-73-1317, 1973.
    [11] Overall B W, Harper R E. The airjet distortiongenerator system-a new tool for aircraft turbine engine testing[R]. AIAA-1977-993, 1977.
    [12] Beale D, Cramer K, King P. Development of improved methods for simulating aircraft inlet distortion in turbine engine ground test[R]. AIAA-2002-3045, 2002.
    [13] Yuhas A J, Ray R J, Burley R R, et al. Design and development of an F/A-18 inlet distortion rake: a cost and time saving solution[R]. NASA-TM-4722, 1995.
    [14] 姜健, 于芳芳, 赵海刚, 等.进气道/发动机相容性评价体系的完善与发展[J].科学技术与工程, 2009, 21(9):6474-6483. doi: 10.3969/j.issn.1671-1815.2009.21.041

    Jiang J, Yu F F, Zhao H G, et al. Perfection and development of engine/intake compatibility evaluate criterion[J]. Science Technology and Engineering, 2009, 9(21):6474-6483. doi: 10.3969/j.issn.1671-1815.2009.21.041
    [15] 刘大响, 叶培梁.俄罗斯的发动机进口流场畸变评定指南[J].燃气涡轮试验与研究, 1994, 4(3):436-441. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400385119
    [16] 郁新华, 刘斌, 陶于金, 等.背负式进气道设计及其气动性能研究[J].西北工业大学学报, 2007, 25(2):270-273. doi: 10.3969/j.issn.1000-2758.2007.02.024

    Yu X H, Liu B, Tao Y J, et al. Top-mounted inlet design and its aerodynamic performance[J]. Journal of Northwestern Polytechnical University, 2007, 25(2):270-273. doi: 10.3969/j.issn.1000-2758.2007.02.024
    [17] Stoll F, Tremback J W, Arnaiz H H. Effect of number of probes and their orientation on the calculation of several compressor face distortion descriptors[R]. NASA-TM-72859, 1979.
    [18] Lawley T, Price D. A miniature three-dimensional pressure probe[J]. Review of Scientific Instruments, 1971, 42(1):158-160. doi: 10.1063/1.1684855
    [19] 吴岳庚.当代压气机试验与测试技术[J].科技与实践, 1998, 2:30-39.
    [20] Gilarranz J L, Ranz A J, Kopko J A, et al. On the use of five-hole probes in the testing of industrial centrifugal compressors[J]. ASME Journal of Turbomachinery, 2004, 127(1):91-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d15a56ae65936e06b09d126bea378e61
    [21] 姜健, 屈霁云, 赵海刚, 等.进气道旋流模拟及测量地面试车台试验研究[J].燃气涡轮试验与研究. 2012, 25(3):36-39. http://d.old.wanfangdata.com.cn/Periodical/rqwlsyyyj201203009

    Jiang J, Qu J Y, Zhao H G, et al. Simulation and measurement of inlet swirl in ground test bed[J]. Gas Turbine Experiment and Research, 2012, 25(3):36-39. http://d.old.wanfangdata.com.cn/Periodical/rqwlsyyyj201203009
    [22] 江勇, 陶增元, 张发启, 等.某型飞机进气道与发动机地面匹配实验研究[J].航空动力学报, 2003, 18(4):554-557. doi: 10.3969/j.issn.1000-8055.2003.04.021

    Jiang Y, Tao Z Y, Zhang F Q, et al. Matching test of an aircraft inlet and engine on the ground[J]. Journal of Aerospace Power, 2003, 18(4):554-557. doi: 10.3969/j.issn.1000-8055.2003.04.021
    [23] Society of automotive engineers. Gasturbine engine inlet flow distortion guidelines[R]. ARP-2002-1420, 2002.
    [24] AllianTech S. A. S. Multi-hole velocity probes[S]. Gennevilliers: Aeroprobe Corporation, 2010.
    [25] Johansen E S, Rediniotis O K, Jones G. The compressible calibration of miniature multi-hole probes[J]. ASME Journal of Fluids Engineering, 2001(123):128-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8371b029b458db82798e44c2ddbe4d98
    [26] Ramakrishnan V, Rediniotis O K. Calibration and data reduction algorithms for non-conventional multi-hole pressure probes[J]. International Journal of English Studies, 2004, 12(5):133-150.
    [27] Society of automotive engineers. A methodology for assessing inlet swirl distortion[R]. ARP-2010-5686, 2010.
    [28] 徐诸霖, 达兴亚, 范召林, 等.基于五孔探针的大S弯进气道旋流畸变评估[J].航空学报, 2017, 38(12):48-57. http://d.old.wanfangdata.com.cn/Periodical/hkxb201712005

    Xu Z L, Da X Y, Fan Z L, Assessment of swirl distortion of serpentine inlet based on five-hole-probe[J]. Acta Aeronautica ET Astronautica Sinica, 2017, 38(12):48-57. http://d.old.wanfangdata.com.cn/Periodical/hkxb201712005
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  68
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-29
  • 修回日期:  2018-05-14
  • 刊出日期:  2018-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日