留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机地面试验激光燃烧诊断技术研究进展

胡志云 叶景峰 张振荣 王晟 李国华 邵珺 陶波 赵新艳 方波浪

胡志云, 叶景峰, 张振荣, 等. 航空发动机地面试验激光燃烧诊断技术研究进展[J]. 实验流体力学, 2018, 32(1): 33-42. doi: 10.11729/syltlx20170135
引用本文: 胡志云, 叶景峰, 张振荣, 等. 航空发动机地面试验激光燃烧诊断技术研究进展[J]. 实验流体力学, 2018, 32(1): 33-42. doi: 10.11729/syltlx20170135
Hu Zhiyun, Ye Jingfeng, Zhang Zhenrong, et al. Development of laser combustion diagnostic techniques for ground aero-engine testing[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 33-42. doi: 10.11729/syltlx20170135
Citation: Hu Zhiyun, Ye Jingfeng, Zhang Zhenrong, et al. Development of laser combustion diagnostic techniques for ground aero-engine testing[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 33-42. doi: 10.11729/syltlx20170135

航空发动机地面试验激光燃烧诊断技术研究进展

doi: 10.11729/syltlx20170135
基金项目: 

国家自然科学基金项目 91541203

国家自然科学基金项目 91641112

详细信息
    作者简介:

    胡志云(1969-), 男, 河南浚县人, 高级工程师。研究方向:燃烧流场激光诊断技术及应用研究。通信地址:陕西西安西北核技术研究所激光与物质相互作用国家重点实验室(710024)。E-mail:huzhiyun@nint.ac.cn

    通讯作者:

    胡志云, E-mail:huzhiyun@nint.ac.cn

  • 中图分类号: O433

Development of laser combustion diagnostic techniques for ground aero-engine testing

  • 摘要: 为了研究湍流燃烧基础问题和改进实际燃烧装置性能,基于激光的燃烧诊断技术已发展成为当前发动机湍流燃烧实验研究的主要测量工具。在已发展的激光燃烧诊断技术中,每种技术都有其局限性和适用范围,需要根据发动机模型燃烧室内部流场测量的要求和特点,选择合适的激光诊断技术。在温度测量中,相干反斯托克斯拉曼散射(CARS)技术主要用于单点温度测量,单脉冲CARS谱测温不确定度优于5%;高时空分辨温度场的测量需要采用双色平面激光诱导荧光(PLIF)测温方法,但其测温精度通常也会相应降低。在速度测量中,粒子成像测速(PIV)技术适用于低速流场速度的精细测量,羟基分子标记测速(HTV)技术适用于高温超声速甚至高超声速流场的速度测量,HTV测速不确定度可优于4%。在组分浓度测量中,主要采用自发拉曼散射(Spontaneous Raman Scattering,SRS)和PLIF技术进行主要组分和中间反应物的浓度分布测量。本文对航空发动机湍流燃烧温度、速度、组分浓度等参量的高时空分辨测量所涉及的激光燃烧诊断技术的基本原理、研究现状和发展趋势进行综述。
  • 图  1  RQL涡轮燃烧室中CARS测温结果[8]

    Figure  1.  The average temperature measurement results of a RQL model combustor stabilized at pressure of 0.70 and 1.03MPa[8]

    图  2  自行研制的高集成度可移动式CARS测温系统示意图

    Figure  2.  Schematic setup for the self-developed, high-integrated and mobile CARS system

    图  3  航空发动机模型燃烧室内部流场平均温度测量结果[3]

    Figure  3.  The average temperature measurement results of an aero-engine model combustor[3]

    图  4  超燃冲压发动机模型燃烧室出口流场温度测量结果[14]

    Figure  4.  The measured temperature versus time at the exit of scramjet engine[14]

    图  5  0.6MPa条件下发动机燃烧室温度场测量结果(a)和CFD计算结果(b)[21]

    Figure  5.  The measured temperature (a) and CFD computation results (b) in the 0.6MPa engine combustor[21]

    图  6  超燃冲压发动机模型燃烧室HTV速度测量方案

    Figure  6.  The schematic setup for the velocity measurement of scramjet model combustor based on HTV technique

    图  7  超燃冲压发动机隔离段(line1)、燃烧室(line2)及出口(line3) 3个马赫数下的速度分布测量结果

    Figure  7.  The measured velocity distribution at three different Mach numbers in the scramjet model combustor

    图  8  航空发动机典型拉曼散射谱(a)及主要组分浓度一维分布结果(b)

    Figure  8.  Typical measured Raman spectrum (a) and measured one-dimensional distribution of major compositions (b) in the aero-engine combustor

    图  9  超燃发动机燃烧室H2燃料燃烧不同剖面温度(a)和O2浓度(b)分布结果[37]

    Figure  9.  The measured temperature (a) and O2 concentration (b) distribution in the hydrogen fueled scramjet combustor[37]

  • [1] 胡志云, 张振荣, 刘晶儒, 等.用单次脉冲非稳腔空间增强探测CARS技术测量火焰温度[J].中国激光, 2004, 31(5):610-612. http://d.old.wanfangdata.com.cn/Periodical/zgjg200405024

    Hu Z Y, Zhang Z R, Liu J R, et al. Temperature measurement in CH4/air flame by single pulse USED CARS[J]. Chinese Journal of Lasers, 2004, 31(5):610-612. http://d.old.wanfangdata.com.cn/Periodical/zgjg200405024
    [2] Davis L C, Marko K A, Romai L. Angular distribution of coherent Raman emission in degenerate four-wave mixing with pumping by a single diffraction coupled laser beam:configurations for high spatial resolution[J]. Applied Optics, 1981, 20(9):1685-1690. doi: 10.1364/AO.20.001685
    [3] Hu Z Y, Liu J R, Ye J F, et al. Laser-based measurements of temperature, species and velocity in engine combustor[C]. Proceedings of SPIE, 2013.
    [4] Okojie R S, Danehy P M, Watkins A N, et al. An overview of NASA hypersonic experimental diagnostic and instrumentation technologies for ground and flight testing[R]. AIAA-2009-7279, 2009.
    [5] Steinberg A M, Arndt C M, Stopper U, et al. Diagnostic requirements for the development of low-emission, fuel-flexible gas turbine combustors[R]. AIAA-2012-0698, 2012.
    [6] Hassa C, Willert C, Fischer M, et al. Nonintrusive flowield, temperature and species measurements on a generic aeroengine combustor at elevated pressure[C]. Proceedings of ASME Turbo Expo, Barcelona, Spain, GT2006-90213, 2006.
    [7] Thariyan M, Bhuiyan A, Meyer S, et al. Dual-pump coherent anti-stokes raman scattering system for temperature and species measurements in an optically accessible high-pressure gas turbine combustor facility[J]. Meas Sci Technol, 2011, 22:015301. doi: 10.1088/0957-0233/22/1/015301
    [8] Mathew P T, Aizaz H B, Sameer V N, et al. Dual-pump CARS and OH-PLIF measurements at elevated pressures in a gas turbine combustor facility[R]. AIAA-2010-4808, 2010.
    [9] Brackmann C, Bood J, Afzelius M, et al. Thermometry in internal combustion engines via dual-broadband rotational coherent anti-stokes raman spectroscopy[J]. Meas Sci Technol, 2004, 15:R13-R25. http://cn.bing.com/academic/profile?id=1d935d165b98f7cae353e2cbb5b585d3&encoded=0&v=paper_preview&mkt=zh-cn
    [10] Magnotti G, Cutler A D, P Danehy. Development of a dual-pump CARS system for measurements in a supersonic combusting free jet[R]. AIAA-2012-1193, 2012.
    [11] 赵建荣, 杨仕润, 俞刚. CARS在超音速燃烧研究中的应用[J].激光技术, 2000, 24(4):207-212. doi: 10.3969/j.issn.1001-3806.2000.04.013

    Zhao J R, Yang Sh R, Yu G. Study of supersonic combustion by CARS measurement technique[J]. Laser Technology, 2000, 24(4):207-212. doi: 10.3969/j.issn.1001-3806.2000.04.013
    [12] Cutler A D, Magnotti G, Cantu L, et al. Dual-pump CARS measurements in the university of virginia's dual-mode scramjet: configuration "A"[R]. AIAA-2012-0114, 2012.
    [13] 李国华, 胡志云, 王晟, 等.基于相干反斯托克斯拉曼散射的二维温度场扫描测量[J].光学精密工程, 2016, 24(1):14-19. http://mall.cnki.net/magazine/Article/GXJM201601003.htm

    Li G H, Hu Z Y, Wang S, et al. 2D scanning CARS for temperature distribution measurement[J]. Optics and Precision Engineering, 2016, 24(1):14-19. http://mall.cnki.net/magazine/Article/GXJM201601003.htm
    [14] 张立荣, 胡志云, 叶景峰, 等.移动式CARS系统测量超声速燃烧室出口温度[J].中国激光, 2013, 40(4):0408007. http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201304035.htm

    Zhang L R, Hu Z Y, Ye J F, et al. Mobile CARS temperature measurements at exhaust of supersonic combustor[J]. Chinese Journal of Lasers, 2013, 40(4):0408007. http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201304035.htm
    [15] Roy S, Meyer T R. Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals[J]. Applied Physics Letters, 2005, 87:264103. doi: 10.1063/1.2159576
    [16] Roy S, Gord J R, Patnaik A K. Recent advances in coherent anti-Stokes Raman scattering spectroscopy:fundamental developments and applications in reacting flows[J]. Progress in Energy and Combustion Science, 2010, 36:280-306. doi: 10.1016/j.pecs.2009.11.001
    [17] Roy S, Kulatilaka W D. Gas-phase single-shot thermometry at 1kHz using fs-CARS spectroscopy[J]. Optics Leters, 2009, 34(24):3857-3859. doi: 10.1364/OL.34.003857
    [18] Kulatilaka W D, Roy S. Effects of O2-CO2 polarization beating on femtosecond coherent anti-Stokes Raman scattering(fs-CARS) spectroscopy of O2[J]. Applied Physics B, 2011, 102:141-147. http://www.springerlink.com/content/fulltext.pdf?id=doi:10.1007/s00340-010-4188-2
    [19] 关小伟, 刘晶儒, 黄梅生, 等. PLIF法定量测量甲烷-空气火焰二维温度场分布[J].强激光与粒子束, 2005, 17(2):173-176. http://www.wenkuxiazai.com/doc/dd33ee3d5727a5e9856a6187.html

    Guan X W, Liu J R, Huang M S, et al. Two-dimensional temperature field measurement in a methane-air flame by PLIF[J]. High Power Laser and Particle Beams, 2005, 17(2):173-176. http://www.wenkuxiazai.com/doc/dd33ee3d5727a5e9856a6187.html
    [20] Palmer J L, Hanson R K. Temperature imaging in a supersonic free jet of combustion gases with two-line OH fluorescence[J]. Applied Optics, 1996, 35(3):485-499. doi: 10.1364/AO.35.000485
    [21] Meier U E, Gabmann D W, Stricker W. LIF imaging and 2D temperature mapping in a model combustor at elevated pressure[J]. Aerospace Science and Technology, 2000, 4:403-414 doi: 10.1016/S1270-9638(00)00142-5
    [22] Kaminski C F, Engström J, Aldén M. Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence[J]. Proceedings of Combustion Institute, 1998, 27:85-93. doi: 10.1016/S0082-0784(98)80393-7
    [23] Medwell P R, Chan Q N, Kalt A M, et al. Instantaneous temperature imaging of diffusion flames using two-line atomic fluorescence[J]. Applied Spectroscopy, 2010, 64:173-176. doi: 10.1366/000370210790619573
    [24] Chan Q N, Medwell P R, Alwahabi Z T, et al. Assessment of interferences to nonlinear two-line atomic fluorescence (NTLAF) in sooty flames[J]. Applied Physics B, 2011, 104(1):189-198. doi: 10.1007/s00340-011-4497-0
    [25] 叶景峰, 胡志云, 刘晶儒, 等.分子标记速度测量技术及应用研究进展[J].实验流体力学, 2015, 29(3):11-17. http://html.rhhz.net/SYLTLX/html/2015-3-11.htm

    Ye J F, Hu Z Y, Liu J R, et al. Development and application of molecular tagging velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3):11-17. http://html.rhhz.net/SYLTLX/html/2015-3-11.htm
    [26] Wehrmeyer J A, Ribarov L A, Oguss D A, et al. Flame flow tagging velocimetry with 193-nm H2O photodissociation[J]. Applied Optics, 1999, 38(22):6912-6917. http://cn.bing.com/academic/profile?id=7eae4edfc09dcd8476832337f129421f&encoded=0&v=paper_preview&mkt=zh-cn
    [27] Pitz R W, Lahr M D, Douglas Z W, et al. Hydroxyl tagging velocimetry in a supersonic flow over a cavity[J]. Applied Optics, 2005, 44(31):6692-6700. doi: 10.1364/AO.44.006692
    [28] Alexander A, Wehrmeyer J, Runge W, et al. Nonintrusive measurement of gas turbine exhaust velocity using hydroxyl tagging velocimetry[R]. AIAA-2008-3709, 2008.
    [29] Gendrich C P, Koochesfahani M M. A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV)[J]. Experiments in Fluids, 1996, 22(1):67-77. doi: 10.1007/BF01893307
    [30] Ramsey M, Pitz R. Template matching for improved accuracy in molecular tagging velocimetry[J]. Expriments in Fluids, 2011, 51(3):811-819. doi: 10.1007/s00348-011-1098-y
    [31] 刘建胜, 刘晶儒, 张振荣, 等.利用拉曼散射法测量燃烧场的温度及组分浓度[J].光学学报, 2000, 20(9):1263-1267. https://mall.cnki.net/huiyi-AGLU201207001017.html

    Liu J S, Liu J R, Zhang Z R, et al. Raman scattering measurements for multi-species and temperature in combustion[J]. Acta Optica Sinica, 2000, 20(9):1263-1267. https://mall.cnki.net/huiyi-AGLU201207001017.html
    [32] Grady N R, Frankland J H, Pitz R W. UV Raman scattering measurements of supersonic reacting flow over a piloted, ramped cavity[R]. AIAA-2012-0614, 2012.
    [33] Wedr L, Meier W, Kutne P, et al. Single-pulse 1D laser Raman scattering applied in a gas turbine model combustor at elevated pressure[J]. Proceedings of the Combustion Institute, 2007, 31:3099-3106. doi: 10.1016/j.proci.2006.07.148
    [34] Locke R J. Temperature and species measurements of combustion produced by a 9-point lean direct injector[R]. AIAA-2013-0562, 2013.
    [35] Eckbrech A C, Anderson T J. Multi-color CARS for simultaneous measurements of multiple combustion species[C]. SPIE-Laser Applications to Chemical Dynamics, 1987.
    [36] Lucht R P. Three-laser coherent anti-Stokes Raman scattering measurements of two species[J]. Optics Letters, 1987, 12(2):78-80. doi: 10.1364/OL.12.000078
    [37] Antcliff R R, Jarrett O J. Multispecies coherent anti-Stokes Raman scattering instrument for turbulent combustion[J]. Review of Scientific Instruments, 1987, 58(11):2075-2080. doi: 10.1063/1.1139466
    [38] Paul P H, Najm H N. Planar laser-induced fluorescence imaging of flame heat release rate[C]. Proc Combust Inst, 1998.
    [39] Byrne S O, Stotz I, Houwing A F P, et al. OH PLIF imaging of supersonic combustion using cavity injection[R]. AIAA-2005-3357, 2005.
    [40] Strakey P A, Woodruff S D, Williams T C, et al. OH-PLIF measurements of high-pressure, hydrogen augmented premixed flames in the simval combustor[R]. AIAA-2007-980, 2007.
    [41] Andresen P, Schluter H, Wolff D, et al. Identification and imaging of OH (v"=0) and O2 (v"=6 or 7) in an automobile spark-ignition engine using a tunable KrF excimer laser[J]. Appl Optics, 1992, 31:7684-7689. doi: 10.1364/AO.31.007684
    [42] Slabaugh C D, Pratt A C, Lucht R P. Simultaneous 5 kHz OH-PLIF/PIV for the study of turbulent combustion at engine conditions[J]. Appl Phys B, 2015, 118:109-130. doi: 10.1007/s00340-014-5960-5
    [43] Sutton J A, Lempert W R. Recent advances in high-energy, high-repetition rate diagnostics for PLIF, rayleigh and Raman scattering imaging in turbulent reacting flows[R]. AIAA 2011-361, 2011.
  • 加载中
图(9)
计量
  • 文章访问数:  439
  • HTML全文浏览量:  200
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-13
  • 修回日期:  2017-12-14
  • 刊出日期:  2018-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日