留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渐扩后倾肩臂孔平板气膜冷却特性实验研究

黄康 王红彪 黄辉 马护生 宗有海

黄康, 王红彪, 黄辉, 等. 渐扩后倾肩臂孔平板气膜冷却特性实验研究[J]. 实验流体力学, 2018, 32(4): 47-52, 71. doi: 10.11729/syltlx20170137
引用本文: 黄康, 王红彪, 黄辉, 等. 渐扩后倾肩臂孔平板气膜冷却特性实验研究[J]. 实验流体力学, 2018, 32(4): 47-52, 71. doi: 10.11729/syltlx20170137
Huang Kang, Wang Hongbiao, Huang Hui, et al. Experimental research of the plate film cooling characteristics of backward-expanding shoulder arm hole[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 47-52, 71. doi: 10.11729/syltlx20170137
Citation: Huang Kang, Wang Hongbiao, Huang Hui, et al. Experimental research of the plate film cooling characteristics of backward-expanding shoulder arm hole[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 47-52, 71. doi: 10.11729/syltlx20170137

渐扩后倾肩臂孔平板气膜冷却特性实验研究

doi: 10.11729/syltlx20170137
基金项目: 

中国空气动力研究与发展中心创新基金 P2S20150043

详细信息
    作者简介:

    黄康(1986-), 男, 四川宜宾人, 博士, 工程师。研究方向:航空发动机热端部件冷却与传热。通信地址:四川省绵阳市二环路南段6号12201信箱(621000)。E-mail: huangkang86@126.com

    通讯作者:

    黄康, E-mail: huangkang86@126.com

  • 中图分类号: TK414.2

Experimental research of the plate film cooling characteristics of backward-expanding shoulder arm hole

  • 摘要: 提出一种新型气膜冷却孔型——渐扩后倾肩臂孔,运用压力敏感漆(PSP)实验技术,研究其与圆孔、肩臂孔的气膜冷却性能差异,并采用N2和CO2气体作为冷却气,对比分析了密度比1.0和1.5情况下吹风比(Br=0.5~2.0)对渐扩后倾肩臂孔平板气膜冷却性能的影响。结果表明:在相同密度比、吹风比条件下,渐扩后倾肩臂孔方案冷却效率优于圆孔和肩臂孔(肩臂孔略高于圆孔)。在密度比为1.0的情况下,当测量点离孔的距离与孔入口直径的比值x/D < 15时,渐扩后倾肩臂孔方案的展向平均气膜冷却效率随着吹风比的增大呈递减趋势;当x/D>15时,冷却效率在Br=1.0时最大。在密度比为1.5的情况下,渐扩后倾肩臂孔方案的展向平均气膜冷却效率随着吹风比的增大呈先增大后减小的趋势,在Br=1.0时冷却效率最大。分析认为:不同密度比情况下,吹风比对渐扩后倾肩臂孔冷却性能的影响差异,主要是由于密度比较小时,冷却气出口速度更大,使冷却气更易吹离冷却壁面。
  • 图  1  不同气膜孔通道结构几何示意图

    Figure  1.  Geometric sketch of the channel structure for different gas film holes

    图  2  PSP标定系统

    Figure  2.  Calibration system of PSP

    图  3  PSP标定曲线

    Figure  3.  Calibration curve of PSP

    图  4  平板气膜冷却实验台照片

    Figure  4.  Test rig of flat film cooling

    图  5  安装好的平板实验件照片

    Figure  5.  Specimens of flat film cooling

    图  6  与经典实验结果对比

    Figure  6.  Comparison with classical experimental results

    图  7  不同孔型的展向平均气膜冷却效率对比图

    Figure  7.  Comparison of spanwise average film cooling efficiency with different hole geometries

    图  8  不同孔型的气膜冷却效率分布云图

    Figure  8.  Distribution of gas film cooling efficiency with different hole geometries

    图  9  吹风比和密度比对展向平均气膜冷却效率的影响

    Figure  9.  Effect of blowing ratio and density ratio on spanwise average film cooling efficiency

    图  10  不同吹风比和密度比方案的气膜冷却效率分布云图

    Figure  10.  Distribution of film cooling efficiency for different blowing ratios and density ratios

  • [1] 朱延鑫, 谭晓茗, 郭文, 等.出流孔型对平板气膜冷却影响机理的研究[J].推进技术, 2013, 34(4):499-505. http://d.old.wanfangdata.com.cn/Periodical/tjjs201304011

    Zhu Y X, Tan X M, Guo W, et al. Numerical simulation on effects of different film cooling holes on plat[J]. Journal of Propulsion Technology, 2013, 34(4):499-505. http://d.old.wanfangdata.com.cn/Periodical/tjjs201304011
    [2] 葛绍岩, 徐靖中.气膜冷却[M].北京:科学出版社, 1985.

    Ge S Y, Xu J Z. Film cooling[M]. Beijing:Science Press, 1985.
    [3] 李少华, 宋东辉, 刘建红, 等.不同孔型平板气膜冷却的数值模拟[J].中国电机工程学报, 2006, 26(17):112-116. doi: 10.3321/j.issn:0258-8013.2006.17.020

    Li S H, Song D H, Liu J H, et al. Numerical simulations of flat plate film cooling using respectively different shaped jet holes[J]. Proceedings of the CSEE, 2006, 26(17):112-116. doi: 10.3321/j.issn:0258-8013.2006.17.020
    [4] Leylek J H, Zerkle R D. Discrete jet film-cooling:a comparison of computational results with experiments[J]. ASME Journal of Transaction, 1994, 116(3):358-368.
    [5] Goldstein R J, Eckert E R, Burggraf F. Effects of hole geometry and density on three-dimensional film cooling[J]. International Journal of Heat & Mass Transfer, 1974, 17(5):595-607.
    [6] Okita Y, Nishiura M. Film effectiveness performance of an arrow head-shaped film-cooling hole geometry[J]. Journal of Turbomachinery, 2007, 129(2):331-339. doi: 10.1115/1.2437781
    [7] Kusterer K, Bohn D, Sugimoto T, et al. Double-jet ejection of cooling air for improved film cooling[J]. Journal of Turboma-chinery, 2007, 129(4); 809-815. doi: 10.1115/1.2720508
    [8] Heidmann J D, Ekkad S. A novel antivortex turbine film-cooling hole concept[J]. Journal of Turbomachinery, 2008, 130(3):031020. doi: 10.1115/1.2777194
    [9] Mhetras S, Yang H T, Gao Z H, et al. Film-cooling effectiveness on squealer rim walls and squealer cavity floor of a gas turbine blade tip using pressure sensitive paint[R]. GT2005-68387, 2005.
    [10] Suryanarayanan A, Mhetras S P, Schobeiri M T, et al. Film-cooling effectiveness on a rotating blade platform[J]. Journal of Turbomachinery, 2009, 131(1):011014. doi: 10.1115/1.2752184
    [11] Gao Z H, Wright L M, Han J. Assessment of steady state PSP and transient ir measurement techniques for leading edge film cooling[C]//Proc of ASME 2005 International Mechanical Engineering Congress and Expositon. 2005.
    [12] Shadid J N, Eckert E R G. The mass transfer to heat transfer in fluids with temperature-dependent properties[J]. Journal of Turbomachinery, 1991, 113(1):27-33. doi: 10.1115/1.2927734
    [13] Caciolli G, Facchini B, Picchi A, et al. Comparison between PSP and TLC steady state techniques for adiabatic effectiveness measurement on a multiperforated plate[J]. Experimental Thermal and Fluid Science, 2013, 48:122-133. doi: 10.1016/j.expthermflusci.2013.02.015
    [14] Jones T V. Theory for the use of foreign gas in simulating film cooling[J]. International Journal of Heat & Fluid Flow, 1999, 20:349-354. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2bb9574e2809f39f5fb4ddd510c7ed46
    [15] Yang Z F, Hu H. An experimental investigation on the trailing edge cooling of turbine blades by using PIV and PSP techniques[J]. Propulsion & Power Research, 2012, 1(1):36-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0212472186
    [16] Ekkad S V, Zapata D, Han J C. Film Effectiveness over a flat surface with air and CO2 injection through compound angle holes using a transient liquid crystal image method[J]. Journal of Turbomachinery, 1997, 119(3):587-593. doi: 10.1115/1.2841162
    [17] Saumweber C, Schulz A, Wittig S. Free-stream turbulence effects on film cooling with shaped holes[J]. Journal of Turbomachinery, 2003, 125(1):65-73. doi: 10.1115/1.1515336
    [18] Gustafson R, Mahmood G I, Acharya S. Flowfield in a film-cooled three-dimensional endwall passage: aerodynamic mea-surements[C]. ASME Paper 2007, No. GT2007-28154.
    [19] Bunker R S. A review of shaped hole turbine film-cooling technology[J]. Journal of Heat Transfer Transactions of the ASME, 2005, 127(4):441-453. doi: 10.1115/1.1860562
    [20] Ekkad S V, Ou S, Rivir R B. Effect of jet pulsation and duty cycle on film cooling from a single jet on a leading edge model[J]. Journal of Turbomachinery, 2006, 128(3):564-571. doi: 10.1115/1.2185122
    [21] Bogard D G, Thole K A. Gas turbine film cooling[J]. Journal of Propulsion & Power, 2005, 22(2):249-270. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201129016
    [22] Sinha A K, Bogard D, Crawford M E. Film-cooling effectiveness downstream of a single row of holes with variable density ratio[J]. Journal of Turbomachinery, 1991, 113(3):441-449. doi: 10.1115-1.2927894/
    [23] 李佳, 韩昌, 任静, 等.基于压敏漆的带横槽气膜冷却实验与数值研究[J].工程热物理学报, 2010, 31(2):239-242. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201000068855

    Li J, Han C, Ren J, et al. Film cooling performance of the embedded holes in trenches with compound angles[J]. Journal of Engineering Thermophysics, 2010, 31(2):239-242. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201000068855
    [24] Kapadia S, Roy S, Heidmann J. First hybrid turbulence modeling for turbine blade cooling[J]. Journal of Thermophysics & Heat Transfer, 2015, 18(1):154-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1223dac0471065d9431efadde430a255
    [25] Bunker R S. Film cooling effectiveness due to discrete holes within a transverse surface slot[C]//Proc of ASME Turbo Expo 2002: Power for Land, Sea, and Air. 2002.
  • 加载中
图(10)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  64
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-23
  • 修回日期:  2018-04-23
  • 刊出日期:  2018-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日