留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预混湍流火焰面褶皱结构网络拓扑研究

王金华 聂要辉 常敏 张猛 黄佐华

王金华, 聂要辉, 常敏, 等. 预混湍流火焰面褶皱结构网络拓扑研究[J]. 实验流体力学, 2018, 32(1): 19-25, 63. doi: 10.11729/syltlx20170147
引用本文: 王金华, 聂要辉, 常敏, 等. 预混湍流火焰面褶皱结构网络拓扑研究[J]. 实验流体力学, 2018, 32(1): 19-25, 63. doi: 10.11729/syltlx20170147
Wang Jinhua, Nie Yaohui, Chang Min, et al. Network topology analysis on wrinkled structure of turbulent premixed Bunsen flame[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 19-25, 63. doi: 10.11729/syltlx20170147
Citation: Wang Jinhua, Nie Yaohui, Chang Min, et al. Network topology analysis on wrinkled structure of turbulent premixed Bunsen flame[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 19-25, 63. doi: 10.11729/syltlx20170147

预混湍流火焰面褶皱结构网络拓扑研究

doi: 10.11729/syltlx20170147
基金项目: 

国家自然科学基金 51776164

国家自然科学基金 91441203

天津大学内燃机燃烧学国家重点实验室开放课题 K2017-03

激光与物质相互作用国家重点实验室开放课题 SKLLIM1508

详细信息
    作者简介:

    王金华(1981-), 男, 湖北荆门人, 教授。研究方向:湍流燃烧基础研究。通信地址:陕西省西安市咸宁西路28号(710049)。E-mail:jinhuawang@mail.xjtu.edu.cn

    通讯作者:

    王金华, E-mail:jinhuawang@mail.xjtu.edu.cn

  • 中图分类号: TK411

Network topology analysis on wrinkled structure of turbulent premixed Bunsen flame

  • 摘要: 湍流火焰结构是表征湍流与火焰相互作用的组分、速度、温度等标量场信息,理解湍流与火焰相互作用规律,验证和发展湍流燃烧模型的实验基础。针对传统曲率PDF分布反映湍流火焰面褶皱结构失准问题,利用网络拓扑结构方法可以标记系统关键节点和特征结构,构建湍流火焰面的拓扑结构。本文标记了湍流火焰面上的关键褶皱结构,分析了湍流与火焰的作用规律,结果表明:低湍流强度下,湍流火焰面的关键褶皱结构由火焰自身不稳定性引起;当湍流强度增大,湍流火焰面的关键褶皱结构由湍流尺度决定。在本生灯湍流火焰中,火焰自身不稳定性引起的火焰褶皱与火焰发展距离有关。在本生灯火焰底部,火焰自身不稳定性不引起火焰面褶皱,随着火焰向下游发展,其对火焰面影响逐渐增大,火焰褶皱程度增加。
  • 图  1  湍流燃烧实验装置

    Figure  1.  Schematic of turbulent Bunsen burner and perforated plate

    图  2  本生灯湍流场测量示意图

    Figure  2.  Schematic of measurement of flow field

    图  3  不稳定性波长计算及湍流分布图

    Figure  3.  Calculation of DL instability wavelength and experimental conditions in the combustion diagram

    图  4  火焰前锋面结构提取过程

    Figure  4.  Procedure of image process

    图  5  湍流火焰拓扑构建示意图

    Figure  5.  The schematic network structure

    图  6  一般曲线及其网络结构可视化

    Figure  6.  Nerwork structure of straight and sinusoidal line

    图  7  不同工况下湍流火焰OH-PLIF图片

    Figure  7.  OH-PLIF images under different conditions

    图  8  不同工况下湍流火焰曲率PDF分布

    Figure  8.  PDF of curvature under different conditions

    图  9  湍流火焰拓扑结构及可视化

    Figure  9.  Network structure of turbulent Bunsen flames

    图  10  不同工况湍流火焰网络结构节点度概率分布

    Figure  10.  Degree distribution under different conditions

    图  11  不同工况下火焰刷厚度及定义

    Figure  11.  Schematic of definition of flame brush thickness and two flame brush under different conditions

    图  12  水平火焰刷厚度随出口高度的变化

    Figure  12.  The normalised horizotal flame brush thickness with respect to the normalised axial distance from Bunsen burner exit

    表  1  甲烷实验工况

    Table  1.   Experiment condition of methan flames

    孔板 φ Uave u SL0 l0 l h Li
    S1_D 0.7 3 0.74 19.0 5.57 0.34 0.08 2
    S1_D 1.0 3 0.74 37.1 5.57 0.34 0.08 0.64
    P3_D 0.7 3 0.21 19.0 4.18 0.55 0.19 2
    P3_D 1.0 3 0.21 37.1 4.18 0.55 0.19 0.64
    P2_D 0.7 3 0.17 19.0 4.59 0.66 0.24 2
    P2_D 1.0 3 0.17 37.1 4.59 0.66 0.24 0.64
    下载: 导出CSV
  • [1] Peters N. Turbulent combustion[M]. Cambridge University Press, 2000.
    [2] Tamadonfar Parsa, Gülder ömer L. Flame brush characteristics and burning velocities of premixed turbulent methane/air Bunsen flames[J]. Combustion and Flame, 2014, 161(12):3154-3165. doi: 10.1016/j.combustflame.2014.06.014
    [3] Fragner R, Halter F, Mazellier N, et al. Investigation of pressure effects on the small scale wrinkling of turbulent premixed Bunsen flames[J]. Proceedings of the Combustion Institute, 2015, 35(2):1527-1535. doi: 10.1016/j.proci.2014.06.036
    [4] Poludnenko A Y, Oran E S. The interaction of high-speed turbulence with flames:Global properties and internal flame structure[J]. Combustion and Flame, 2010, 157(5):995-1011. doi: 10.1016/j.combustflame.2009.11.018
    [5] Lipatnikov A N, Chomiak J. Effects of premixed flames on turbulence and turbulent scalar transport[J]. Progress in Energy and Combustion Science, 2010, 36(1):1-102. doi: 10.1016/j.pecs.2009.07.001
    [6] Nishiki S. Modeling of flame-generated turbulence based on direct numerical simulation databases[J]. Proceedings of the Combustion Institute, 2002, 29:2017-2022. doi: 10.1016/S1540-7489(02)80246-2
    [7] Lipatnikov A N, Chomiak J. Turbulent flame speed and thickness:phennomenology, evaluation, and application in multi-dimensional simulations[J]. Progress in Energy & Combustion Science, 2002, 28:1-74. https://www.sciencedirect.com/science/article/pii/S0360128501000077
    [8] Fureby C. A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion[J]. Proceedings of the Combustion Institute, 2005, 30(1):593-601. doi: 10.1016/j.proci.2004.08.068
    [9] Cintosun Esen, Smallwood Gregory J, Gülder ömer L. Flame surface fractal characteristics in premixed turbulent combustion at high turbulence intensities[J]. AIAA Journal, 2007, 45(11):2785-2789. doi: 10.2514/1.29533
    [10] Bradley D. Application of a reynolds stress, stretched flamelet, mathematical model to computations of turbulent burning velocities andcomparison with experiments[J]. Combustion & Flame, 1994, 96:221-248. https://www.sciencedirect.com/science/article/pii/0010218094900116
    [11] Yeung P K. Lagrangian statistics from direct numerical simulations of isotropic turbulence[J]. Journal of Fluid Mechanics, 1989, 207:531-586. doi: 10.1017/S0022112089002697
    [12] Pope S. Lagrangian PDF methods for turbulent flows[J]. Annu Rev Fluid Mech, 1994, 26:23-63. doi: 10.1146/annurev.fl.26.010194.000323
    [13] Chaudhuri S. Life of flame particles embedded in premixed flames interacting with near isotropic turbulence[J]. Proceedings of the Combustion Institute, 2015, 35(2):1305-1312. doi: 10.1016/j.proci.2014.08.007
    [14] Chen H J. The mechanism of two-dimensional pocket formation in lean premixed methane-air flames with implications to turbulent combustion[J]. Combustion & Flame, 1999:15-48. http://cn.bing.com/academic/profile?id=91691432f860044c4cc75574cbba6e55&encoded=0&v=paper_preview&mkt=zh-cn
    [15] Liu C, Zhou W X, Yuan W K. Statistical properties of visibility graph of energy dissipation rates in three-dimensional fully developed turbulence[J]. Physica A:Statistical Mechanics and its Applications, 2010, 389(13):2675-2681. doi: 10.1016/j.physa.2010.02.043
    [16] Murugesan Meenatchidevi, Sujith R I. Combustion noise is scale-free:transition from scale-free to order at the onset of thermoacoustic instability[J]. Journal of Fluid Mechanics, 2015, 772:225-245. doi: 10.1017/jfm.2015.215
    [17] 张猛, 王金华, 谢永亮, 等.利用OH_PLIF测量CH4/H2/空气混合气湍流燃烧速率[J].燃烧科学与技术, 2013, 19(6):512-516. http://gxhx.cbpt.cnki.net/WKB2/WebPublication/wkTextContent.aspx?contentID=&colType=4&yt=2017&st=05

    Zhang M, Wang J H, Xie Y L, et al. Measurement of turbulent burning velocity of CH4/H2/Air mixtures using OH-PLIF[J]. Journal of Combustion Science and Technology, 2013, 19(6):512-516. http://gxhx.cbpt.cnki.net/WKB2/WebPublication/wkTextContent.aspx?contentID=&colType=4&yt=2017&st=05
    [18] Zhang M, Wang J H, Wu J, et al. Flame front structure of turbulent premixed flames of syngas oxyfuel mixtures[J]. International Journal of Hydrogen Energy, 2014, 39(10):5176-5185. doi: 10.1016/j.ijhydene.2014.01.038
    [19] Kobayashi H, Tamura T, Maruto K, et al. Burning velocity of turbulent premixed flames in a high pressure environment[J]. Proceedings of the Combustion Institute, 1996, 26(1):389-396. doi: 10.1016/S0082-0784(96)80240-2
    [20] 张猛, 王金华, 俞森彬, 等.自适应阈值二值法提取湍流火焰前锋面结构[J].燃烧科学与技术, 2016, 22(3):212-217. http://journals.tju.edu.cn/rs/oa/scriptlsit.aspx?kind=Field&colid=1

    Zhang M, Wang J H, Yu S B, et al. Flame front tracking of turbulent premixed flames using adaptive threshold binarization[J]. Journal of Combustion Science and Technology, 2016, 22(3):212-217. http://journals.tju.edu.cn/rs/oa/scriptlsit.aspx?kind=Field&colid=1
    [21] Luque B, Lacasa L, Ballesteros F, et al. Horizontal visibility graphs:Exact results for random time series[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2009, 80(2):046103. http://cn.bing.com/academic/profile?id=71d2259316f2903d95668ed2a6c721a5&encoded=0&v=paper_preview&mkt=zh-cn
    [22] Bresenham J E. Algorithm for computer control of a digital plotter[J]. IBM Systems Journal, 1965, 4(1):25-30. doi: 10.1147/sj.41.0025
    [23] Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509. doi: 10.1126/science.286.5439.509
    [24] Hamlington P E, Poludnenko A Y, Oran E S. Interactions between turbulence and flames in premixed reacting flows[J]. Physics of Fluids, 2011, 23(12):125111. doi: 10.1063/1.3671736
    [25] Chakraborty N, Klein M, Swaminathan N. Effects of lewis number on the reactive scalar gradient alignment with local strain rate in turbulent premixed flames[J]. Proceedings of the Combustion Institute, 2009, 32(1):1409-1417. doi: 10.1016/j.proci.2008.06.021
    [26] Fruchterman T M J, Reingold E M. Graph drawing by force-directed placement[J]. Software Practice & Experience, 2010, 21(11):1129-1164. http://cn.bing.com/academic/profile?id=47fec71599586b4db1914c25cba86c0e&encoded=0&v=paper_preview&mkt=zh-cn
    [27] Scholz M. Node similarity as a basic principle behind connectivity in complex networks[J]. Computer Science, 2015:1-7. http://cn.bing.com/academic/profile?id=ddb6e0727cf2e5cf67a5ef7efd3ee4ec&encoded=0&v=paper_preview&mkt=zh-cn
    [28] Boyer L, Quinard J. On the dynamics of anchored flames[J]. Combustion & Flame, 1990, 82(1):51-65. http://cn.bing.com/academic/profile?id=a9bbda85daa4eb50d8e2717d186a4bfc&encoded=0&v=paper_preview&mkt=zh-cn
    [29] Lieuwen T. Local consumption speed of turbulent premixed flames-An analysis of "memory effect"[J]. Combustion & Flame, 2010, 157:955-965. http://www.sciencedirect.com/science/article/pii/S0010218009002855
    [30] Clavin P, Williams F A. Theory of premixed-flame propagation in large-scale turbulence[J]. Journal of Fluid Mechanics, 2006, 90(3):589-604. http://cn.bing.com/academic/profile?id=72b3b47bc5a56ca0ac6ef4860f677a1b&encoded=0&v=paper_preview&mkt=zh-cn
    [31] Aldredge R C, Williams F A. Influence of wrinkled premixed-flame dynamics on large-scale, low-intensity turbulent flow[J]. Journal of Fluid Mechanics, 2006, 228(228):487-511. http://cn.bing.com/academic/profile?id=7af3354618aef0574a574540cba8b3c8&encoded=0&v=paper_preview&mkt=zh-cn
    [32] Tamadonfar Parsa, Gülder ömer L. Effects of mixture composition and turbulence intensity on flame front structure and burning velocities of premixed turbulent hydrocarbon/air Bunsen flames[J]. Combustion and Flame, 2015, 162(12):4417-4441. doi: 10.1016/j.combustflame.2015.08.009
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  252
  • HTML全文浏览量:  60
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-02
  • 修回日期:  2017-12-25
  • 刊出日期:  2018-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日