留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型飞机平尾翼尖涡对后体涡系影响的实验研究

王笑 秦苏洋 向阳 王福新 刘洪

王笑, 秦苏洋, 向阳, 等. 大型飞机平尾翼尖涡对后体涡系影响的实验研究[J]. 实验流体力学, 2018, 32(4): 53-60. doi: 10.11729/syltlx20170149
引用本文: 王笑, 秦苏洋, 向阳, 等. 大型飞机平尾翼尖涡对后体涡系影响的实验研究[J]. 实验流体力学, 2018, 32(4): 53-60. doi: 10.11729/syltlx20170149
Wang Xiao, Qin Suyang, Xiang Yang, et al. Experimental investigation on large aircraft afterbody vortices under the influence of horizontal tail tip vortices[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 53-60. doi: 10.11729/syltlx20170149
Citation: Wang Xiao, Qin Suyang, Xiang Yang, et al. Experimental investigation on large aircraft afterbody vortices under the influence of horizontal tail tip vortices[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 53-60. doi: 10.11729/syltlx20170149

大型飞机平尾翼尖涡对后体涡系影响的实验研究

doi: 10.11729/syltlx20170149
基金项目: 

国家重点基础研究发展计划 2014CB74480

详细信息
    作者简介:

    王笑(1991-), 男, 吉林通化人, 硕士研究生。研究方向:飞机减阻设计、低速风洞实验。通信地址:上海市闵行区东川路800号上海交通大学航空航天学院(200240)。E-mail:wangxiao15aa@126.com

    通讯作者:

    王福新, E-mail:fuxinwang@sjtu.edu.cn

  • 中图分类号: V211;O355

Experimental investigation on large aircraft afterbody vortices under the influence of horizontal tail tip vortices

  • 摘要: 大型飞机在飞行过程中机身后体会产生一对反向旋转的脱体涡(后体主涡),该涡与平尾翼尖涡共同构成飞机后体的涡系结构。在风洞中,利用激光粒子测速(PIV)方法,对单独后体和加装不同展长平尾的后体,分别研究涡系结构的动力学特征。结果表明:后体主涡的涡核中心沿流向明显向上移动;加装平尾后,涡系呈现典型的四涡结构,平尾翼尖涡对后体主涡影响显著,加大了后者向上移动的趋势,同时使其沿展向外移,并显著削弱其涡旋强度;平尾展长增加后,后体主涡受到的影响有所减弱。在低速环境下,来流速度对后体涡系结构的无量纲动力学参数影响较小。
  • 图  1  回流式风洞

    Figure  1.  Return-flow wind tunnel

    图  2  后体实验模型

    Figure  2.  Afterbody model for testing

    图  3  实验系统示意图

    Figure  3.  Sketch of experimental devices

    图  4  单独后体的涡量云图(v=25m/s)

    Figure  4.  Contour of vorticity for afterbody without horizonal tail (v=25m/s)

    图  5  带平尾后体的涡量云图(v=25m/s)

    Figure  5.  Contour of vorticity for afterbodies with horizonal tail (v=25m/s)

    图  6  涡心位置轨迹图(v=25m/s)

    Figure  6.  Trails of vortex cores (v=25m/s)

    图  7  后体主涡与平尾翼尖涡涡心位置与环量的变化曲线(v=25m/s)

    Figure  7.  Evolution of vortex center and circulation of APVs & HTVs (v=25m/s)

    图  8  不同Re的涡量云图(HT050后体,X/L=1.0截面)

    Figure  8.  Contour of vorticity for different Re (afterbody HT050, cross section X/L=1.0)

    图  9  不同Re的涡心位置与环量的变化曲线(HT050后体)

    Figure  9.  Evolution of vortex center and circulation for different Re (afterbody HT050)

    表  1  实验工况表

    Table  1.   List of test conditions

    Model HT span/
    mm
    Flow speed/
    (m·s-1)
    Re
    HT000 0 20 4.37×105
    HT000 0 25 5.46×105
    HT000 0 30 6.55×105
    HT050 50 20 4.37×105
    HT050 50 25 5.46×105
    HT050 50 30 6.55×105
    HT100 100 20 4.37×105
    HT100 100 25 5.46×105
    HT100 100 30 6.55×105
    下载: 导出CSV
  • [1] Peake D J, Rainbird W J, Atraghji E G. Three-dimensional flow separations on aircraft and missiles[J]. AIAA Journal, 1972, 10(5):567-580. doi: 10.2514/3.50159
    [2] Hallstaff T H, Brune G W. An investigation of civil transport aft body drag using a three-dimensional wake survey method[R]. AIAA-1984-0614, 1984.
    [3] Britcher C P, Alcorn C W. Interference-free measurements of the subsonic aerodynamics of slanted-base ogive cylinders[J]. AIAA Journal, 1991, 29(4):520-525. doi: 10.2514/3.10614
    [4] Bulathsinghala D S, Jackson R, Wang Z, et al. Afterbody vortices of axisymmetric cylinders with a slanted base[J]. Experiments in Fluids, 2017, 58:60. doi: 10.1007/s00348-017-2343-9
    [5] Epstein R J, Carbonaro M C, Caudron F. An experimental investigation of the flowfield about an upswept afterbody[R]. AIAA-1994-1840, 1994.
    [6] Epstein R J, Carbonaro M C, Caudron F. Experimental investigation of the flowfield about an upswept afterbody[J]. Journal of Aircraft, 1994, 31(6):1281-1290. doi: 10.2514/3.46648
    [7] Gentile V, Schrijer F F J, van Oudheusden B W, et al. Afterbody effects on axisymmetric base flows[J]. AIAA Journal, 2016, 54(8):2285-2294. doi: 10.2514/1.J054733
    [8] Claus M P, Morton S A, Cummings R M, et al. DES turbulence modelling on the C-130 comparison between computational and experimental results[R]. AIAA-2005-884, 2005.
    [9] Wooten J D Ⅳ, Yechout T R. Wind tunnel evaluation of C-130 drag reduction strakes and in-flight loading prediction[R]. AIAA-2008-348, 2008.
    [10] Bury Y, Morton S A, Charles R. Experimental investigation of the flow field in the close wake of a simplified C130 shape a model approach of airflow influence on airdrop[R]. AIAA-2008-6415, 2008.
    [11] Bergeron K, Cassez J F, Bury Y. Computational investigation of the upsweep flow field for a simplified C-130 Shape[R]. AIAA-2009-90, 2009.
    [12] Bury Y, Jardin T, Kloeckner A. Experimental investigation of the vortical activity in the close wake of a simplified military transport aircraft[J]. Experiments in Fluids, 2013, 54:1524. doi: 10.1007/s00348-013-1524-4
    [13] Calarese W, Crisler W P, Gustafson G L. Afterbody drag reduction by vortex generators[R]. AIAA-1985-354, 1985.
    [14] 武宁, 段卓毅, 廖振荣, 等.大型飞机扁平后体导流片减阻增稳研究[J].空气动力学学报, 2012, 30(2):223-227. doi: 10.3969/j.issn.0258-1825.2012.02.016

    Wu N, Duan Z Y, Liao Z R, et al. Research on chine of aerotransport after-body for drag reduction and stability enhancement[J]. Acta Aerodynamica Sinica. 2012, 30(2):223-227. doi: 10.3969/j.issn.0258-1825.2012.02.016
    [15] Jackson R, Wang Z, Gursul I. Control of afterbody vortices by blowing[R]. AIAA-2015-2777, 2015.
    [16] 黄涛, 王延奎, 邓学蓥, 等.尾翼对民机后体流动特性的影响[J].北京航空航天大学学报, 2006, 32(6):645-648. doi: 10.3969/j.issn.1001-5965.2006.06.005

    Huang T, Wang Y K, Deng X Y, et al. Influence of empennage on flow over upswept after-body[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(6):645-648. doi: 10.3969/j.issn.1001-5965.2006.06.005
    [17] Wang Y K, Qin S Y, Xiang Y, et al. Interaction mechanism of vortex system generated by large civil aircraftafterbody[J]. Journal of Aeronautics, Astronautics and Aviation, 2017, 49(1):67-76.
    [18] 张彬乾, 王元元, 段卓毅, 等.大上翘机身后体设计方法[J].航空学报, 2010, 31(10):1933-1939. http://d.old.wanfangdata.com.cn/Periodical/hkxb201010005

    Zhang B Q, Wang Y Y, Duan Z Y, et al. Design method for large upswept afterbody transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10):1933-1939. http://d.old.wanfangdata.com.cn/Periodical/hkxb201010005
    [19] Jeong J, Hussain F. On the Identification of a Vortex[J]. Journal of Fluid Mechanics, 1995, 285:69-94. doi: 10.1017/S0022112095000462
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  166
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-21
  • 修回日期:  2018-03-05
  • 刊出日期:  2018-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日