留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速气流中液体横向射流空间振荡分布建模

吴里银 张扣立 李晨阳 李清廉

吴里银, 张扣立, 李晨阳, 等. 超声速气流中液体横向射流空间振荡分布建模[J]. 实验流体力学, 2018, 32(4): 20-30. doi: 10.11729/syltlx20170172
引用本文: 吴里银, 张扣立, 李晨阳, 等. 超声速气流中液体横向射流空间振荡分布建模[J]. 实验流体力学, 2018, 32(4): 20-30. doi: 10.11729/syltlx20170172
Wu Liyin, Zhang Kouli, Li Chenyang, et al. Model for three-dimensional distribution of liquid fuel in supersonic crossflows[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 20-30. doi: 10.11729/syltlx20170172
Citation: Wu Liyin, Zhang Kouli, Li Chenyang, et al. Model for three-dimensional distribution of liquid fuel in supersonic crossflows[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 20-30. doi: 10.11729/syltlx20170172

超声速气流中液体横向射流空间振荡分布建模

doi: 10.11729/syltlx20170172
基金项目: 

国家自然科学基金 11802326

详细信息
    作者简介:

    吴里银(1986-), 男, 河南信阳人, 博士, 助理研究员。研究方向:高超声速复杂流动与高马赫超燃研究。通信地址:四川省绵阳市二环路南段6号(621000)。E-mail:wly4256459@163.com

    通讯作者:

    吴里银, E-mail:wly4256459@163.com

  • 中图分类号: V235.21

Model for three-dimensional distribution of liquid fuel in supersonic crossflows

  • 摘要: 针对超声速气流中液体横向射流的空间振荡分布特性开展试验研究,建立射流/喷雾在纵向和三维空间内的振荡分布预测模型。试验在Ma2.1下吹式风洞中进行,采用脉冲激光背景成像方法和基于PIV原理的倾斜成像方法分别捕捉纵向和不同横截面上的喷雾瞬态分布结构,涉及的研究参数及其变化范围包括:超声速来流总压(642~1010kPa)、液体喷孔直径(0.48~2.07mm)、距离喷孔的流向距离(10~125mm)以及液气动量比(0.11~10)。通过研究,提出并定义一种用于定量描述射流/喷雾空间振荡分布的无量纲参数——喷雾分数(γ),基于喷雾分数开展了纵向喷雾振荡分布研究,建立了纵向边界带模型,并开展了模型准确性验证。研究并发现了横截面上喷雾振荡分布呈"Ω"型,提出spray body和spray foot的分区概念,构造egg-shape曲线对spray body区域的喷雾分数等值线进行拟合,建立了egg-shape曲线方程中6个关键系数的系数模型,进而建立了超声速气流中液体横向射流空间振荡分布预测模型。
  • 图  1  风洞结构示意图与实物图

    Figure  1.  The supersonic tunnel system

    图  2  风洞试验段速度分布云图(x=0为喷射位置)

    Figure  2.  The airflow velocity distribution in test section (PIV result), 'x=0' is the injection position

    图  3  脉冲激光背景成像方法成像过程示意图

    Figure  3.  Sketch map of imaging process of PLBI

    图  4  试验风洞与试验方法

    Figure  4.  The schematic diagram of test section and optical path

    图  5  不同时刻横截面液雾瞬态分布(零时刻为开阀喷注起始时间)

    Figure  5.  Cross-section distributions of the spray at four random moments in case 54

    图  6  纵向喷雾分数计算结果

    Figure  6.  Numerical result of γ value

    图  7  多参数协同作用对边界带的影响

    Figure  7.  The spray boundary zones under various operating conditions

    图  8  喷雾分数沿纵向分布规律

    Figure  8.  The γ trend in longitudinal direction

    图  9  全部工况下γ=0.5对应边界曲线的拟合

    Figure  9.  Fitting result of the experimental results for γ=0.5

    图  10  边界带模型预测效果(验证试验工况参数:喷射介质为水; 喷孔直径d=1.0mm; 喷注压降pl=1.49MPa; Ma=2.1;液气动量通量比q=3.8)

    Figure  10.  Evaluation of the accuracy of the model

    图  11  横截面喷雾分数分布计算结果

    Figure  11.  Numerical result of the γ-value at a cross-section

    图  12  dq不变的条件下,液雾横截面分布随x的变化

    Figure  12.  Impact on the spray's cross-section distribution when x changes (d and q keep constant)

    图  13  dx不变的条件下,液雾横截面分布随q的变化

    Figure  13.  Impact on the spray's cross-section distribution when q changes (d and x kept constant)

    图  14  γ等值线

    Figure  14.  The γ contour line

    表  1  工况参数表(表中Ma为气流马赫数,T0为气流总温,p0为气流总压,d为喷嘴流道直径,l为喷嘴流道长度,Δp为液体喷注压降,Vl为射流出口平均速度,q为液气动量比)

    Table  1.   The list of key parameters (Ma is mach number, T0 is stagnation temperature, p0 is stagnation pressure, d is nozzle diameter, l is nozzle length, Δp is injection pressure, Vl is velocity of liquid jet, q is momentum flux ratio of liquid to gas)

    No. Supersonic crossflow (Ma=2.1; T0=300K) Kerosene jet (density: 800kg/m3; l=1.5mm)
    p0/kPa d/mm Δp /MPa Vl /(m·s-1) q
    1~8 920 1.52 0.48~3.93 23~69 0.68~6.16
    9/10 714 1.52 0.43/1.24 22/38 0.84/2.46
    11/12 792 1.52 0.48/1.35 23/40 0.82/2.41
    13~18 923 1.25 0.58~4.10 22~61 0.62~4.85
    19 1010 1.25 1.92 41 2.04
    20 820 1.25 1.87 41 2.47
    21 719 1.25 2.26 45 3.44
    22 645 1.25 2.00 43 3.40
    23~29 915 1.00 0.36~4.61 18~72 0.42~6.84
    30~32 797 1.00 2.81~4.39 57~71 4.97~7.49
    33~36 795 0.48 0.63~4.55 15~23 0.11~0.78
    37 642 0.48 4.33 22 0.92
    38 742 0.48 4.37 23 0.80
    39 947 0.48 4.37 23 0.63
    40 1.00 3.80
    下载: 导出CSV

    表  2  工况参数表(表中Ma为气流马赫数,T0为气流总温,p0为气流总压,d为射流喷孔直径,q为液气动量比)

    Table  2.   The list of key parameters (Ma is mach number, T0 is stagnation temperature, p0 is stagnation pressure, d is nozzle diameter, q is momentum flux ratio of liquid to gas)

    No. d/mm x/d q
    Gas crossflow 41~44 0.68 100 1.6/3.4/6.1/10
    Ma=2.1 45~46 0.99 10 3.7/5.5
    T0=300K 47~48 0.99 20 3.9/5.7
    p0=891kPa 49 0.99 30 3.9
    50~51 0.99 50 3.9/5.6
    52 0.99 70 3.9
    Water Jet 53~56 0.99 100 3.9/5.6/7.4/9
    ρ=1000kg/m3 57~60 1.25 100 1.1/2.4/3.7/4.9
    Tw=300K 61~64 1.51 66 1.4/2.7/4.1/5.5
    65 2.07 10 2.3
    66 2.07 30 1.1
    67 2.07 45 2.3
    下载: 导出CSV
  • [1] 邓帆, 叶友达, 焦子涵, 等. HIFiRE项目中气动/推进一体化高超声速飞行器设计研究[J].实验流体力学, 2017, 31(2):73-80. http://www.syltlx.com/CN/abstract/abstract11014.shtml

    Deng F, Ye Y D, Jiao Z H, et al. Research on HIFiRE project's hypersonic vehicle integrated design of aerodynamic and scramjet propulsion[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2):73-80. http://www.syltlx.com/CN/abstract/abstract11014.shtml
    [2] Boudreau A H. Status of the U.S. air force HyTech program[R]. AIAA-2003-6947, 2003.
    [3] 冮强, 王辽, 郭金鑫, 等.基于总温测量的超燃冲压发动机燃烧效率研究[J].实验流体力学, 2012, 26(4):1-5. doi: 10.3969/j.issn.1672-9897.2012.04.001

    Gang Q, Wang L, Guo J X, et al. Scramjet combustion efficiency studies based on the total temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4):1-5. doi: 10.3969/j.issn.1672-9897.2012.04.001
    [4] Wang Z G, Wu L Y, Li Q L, et al. Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow[J]. Applied Physics Letters, 2014, 105(13):134102. (WOS:000343031700091) doi: 10.1063/1.4893008
    [5] Wu L Y, Wang Z G, Li Q L, et al. Breakup and coalescence of kerosene droplet group in a Mach 1.86 supersonic crossflow[J]. Applied Physics Letters, 2014, 107(10):104103. (WOS:000361640200066)
    [6] Wu L Y, Wang Z G, Li Q L, et al. Study on transient structure characteristics of round liquid jet in supersonic crossflow[J]. Journal of Visualization, 2016, 19(3):337-341. doi: 10.1007/s12650-015-0328-4
    [7] Forde J M, Molder S, Szpiro E J. Secondary liquid injection into a supersonic airstream[J]. Journal of Spacecraft and Rockets, 1965, 3(8):1172-1176.
    [8] Yates C. Liquid injection into supersonic airstreams[R]. AIAA-1971-724, 1971.
    [9] Baranovsky S I, Schetz J A. Effect of Injection angle on liquid injection in supersonic flow[J]. AIAA Journal, 1980, 18(6):625-629. doi: 10.2514/3.50798
    [10] Lin K C, Kennedy P J, Jackson T A. Spray penetration heights of angle-injected aerated-liquid jets in supersonic crossflows[R]. AIAA-2000-0194, 2000.
    [11] Ghenai C, Sapmaz H, Lin C X. Penetration height correlations for non-aerated and aerated transverse liquid jets in supersonic cross flow[J]. Experiments in Fluids, 2009, 46(1):121-129. doi: 10.1007/s00348-008-0547-8
    [12] Lin K C, Kennedy P J, Jackson T A. Structures of water jets in a Mach 1.94 supersonic crossflow[R]. AIAA-2004-971, 2004.
    [13] Perurena J B, Asma C O, Theunissen R, et al. Experimental investigation of liquid jet injection into Mach 6 hypersonic crossflow[J]. Experiments in Fluids, 2009, 46(3):403-417. doi: 10.1007/s00348-008-0566-5
    [14] 徐胜利, Archer R D, Milton B E, 等.煤油在超声速气流中非定常横向喷射的实验观察[J].空气动力学学报, 2000, 18(3):272-279. doi: 10.3969/j.issn.0258-1825.2000.03.003

    Xu S L, Archer R D, Milton B E, et al. Experimental investigation on unsteady transverse injection of kerosene into a supersonic flow[J]. Acta Aerodynamica Sinica, 2000, 18(3):272-279. doi: 10.3969/j.issn.0258-1825.2000.03.003
    [15] 王冬, 俞刚.煤油射流在超声速燃烧室中的实验研究[J].实验流体力学, 2005, 19(2):11-13. doi: 10.3969/j.issn.1672-9897.2005.02.003

    Wang D, Yu G. Investigation of kerosene jet spray in supersonic combustion[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2):11-13. doi: 10.3969/j.issn.1672-9897.2005.02.003
    [16] 费立森, 徐胜利, 王昌建, 等.高速冷态气流中煤油雾化现象的实验研究[J].中国科学(E辑:技术科学), 2008, 38(1):72-78. http://cdmd.cnki.com.cn/Article/CDMD-10358-2008091933.htm
    [17] 潘余, 王振国.激波对超声速流中横向射流的影响[J].国防科技大学学报, 2007, 29(6):6-9. doi: 10.3969/j.issn.1001-2486.2007.06.002

    Pan Y, Wang Z G. Shock impinge on supersonic cross flow injection[J]. Journal of National University of Defense Technology, 2007, 29(6):6-9. doi: 10.3969/j.issn.1001-2486.2007.06.002
    [18] 刘静, 王辽, 张佳, 等.超声速气流中横向射流雾化实验和数值模拟[J].航空动力学报, 2008, 23(4):724-729. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200804023

    Liu J, Wang L, Zhang J, et al. Experimental and numerical simulation of atomization of liquid jet in supersonic crossflow[J]. Journal of Aerospace Power, 2008, 23(4):724-729. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200804023
    [19] 陈亮, 乐嘉陵, 宋文艳, 等.超声速冷态流场液体射流雾化实验研究[J].实验流体力学, 2011, 25(2):29-34. doi: 10.3969/j.issn.1672-9897.2011.02.006

    Chen L, Le J L, Song W Y, et al. Experimental investigation of liquid jets atomization in supersonic cold crossflow[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(2):29-34. doi: 10.3969/j.issn.1672-9897.2011.02.006
    [20] 曹娜, 徐青, 曹亮, 等.脉冲全息技术在发动机射流雾化场测量中的应用[J].现代应用物理, 2013, 4(4):323-329. doi: 10.3969/j.issn.2095-6223.2013.04.004

    Cao N, Xu Q, Cao L, et al. Measurement of spray characterization of engine nozzle by pulsed holography[J]. Modern Applied Physics, 2013, 4(4):323-329. doi: 10.3969/j.issn.2095-6223.2013.04.004
    [21] Yang H, Li F, Sun B. Trajectory analysis of fuel injection into supersonic cross flow based on schlieren method[J]. Chinese Journal of Aeronautics, 2012, 25(1):42-50. doi: 10.1016/S1000-9361(11)60360-9
    [22] 李锋, 吕付国, 罗卫东, 等.超声速气流中液体横向射流的破碎特性[J].北京航空航天大学学报, 2015, 41(12):2356-2362. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201512022

    Li F, Lyu F G, Luo W D, et al. Breakup characteristics of li-quid jet in supersonic cross flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(12):2356-2362. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201512022
    [23] 刘林峰, 徐胜利, 郑日恒, 等.超声速气流中凹槽结构煤油喷射和掺混研究[J].推进技术, 2010, 31(6):721-729. http://d.old.wanfangdata.com.cn/Periodical/tjjs201006011

    Liu L F, Xu S L, Zheng R H, et al. Studies on kerosene injection and mixing with cavity in supersonic flow[J]. Journal of Propulsion Technology, 2010, 31(6):721-729. http://d.old.wanfangdata.com.cn/Periodical/tjjs201006011
    [24] Humble R A, Peltier Bowersox S J, R D W. Visualization of the structural response of a hypersonic turbulent boundary layer to convex curvature[J]. Physics of Fluids, 2012, 24(10):148-154. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e7ab9ac234a00e47fbac6b61d7dfd985
    [25] 吴里银, 王振国, 李清廉, 等.超声速气流中液体横向射流的非定常特性与振荡边界模型[J].物理学报, 2016, 65(9):178-186. http://d.old.wanfangdata.com.cn/Periodical/wlxb201609023

    Wu L Y, Wang Z G, Li Q L, et al. Unsteady oscillation distribution model of liquid jet in supersonic crossflows[J]. Acta Physica Sinica, 2016, 65(9):178-186. http://d.old.wanfangdata.com.cn/Periodical/wlxb201609023
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  58
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-14
  • 修回日期:  2018-07-16
  • 刊出日期:  2018-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日