留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斜激波入射V形钝前缘溢流口激波干扰研究

张恩来 李祝飞 李一鸣 杨基明

张恩来, 李祝飞, 李一鸣, 等. 斜激波入射V形钝前缘溢流口激波干扰研究[J]. 实验流体力学, 2018, 32(3): 50-57. doi: 10.11729/syltlx20180002
引用本文: 张恩来, 李祝飞, 李一鸣, 等. 斜激波入射V形钝前缘溢流口激波干扰研究[J]. 实验流体力学, 2018, 32(3): 50-57. doi: 10.11729/syltlx20180002
Zhang Enlai, Li Zhufei, Li Yiming, et al. Investigation on the shock interactions between an incident shock and a plate with V-shaped blunt leading edge[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 50-57. doi: 10.11729/syltlx20180002
Citation: Zhang Enlai, Li Zhufei, Li Yiming, et al. Investigation on the shock interactions between an incident shock and a plate with V-shaped blunt leading edge[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 50-57. doi: 10.11729/syltlx20180002

斜激波入射V形钝前缘溢流口激波干扰研究

doi: 10.11729/syltlx20180002
基金项目: 

国家自然科学基金 11772325

国家自然科学基金 11621202

详细信息
    作者简介:

    张恩来(1993-), 男, 四川雅安人, 博士研究生。研究方向:高超声速空气动力学。通信地址:安徽省合肥市中国科学技术大学工程科学学院近代力学系(230027)。E-mail:zel0222@mail.ustc.edu.cn

    通讯作者:

    李祝飞, E-mail:lizhufei@ustc.edu.cn

  • 中图分类号: V211.7;O354.5

Investigation on the shock interactions between an incident shock and a plate with V-shaped blunt leading edge

  • 摘要: 针对内转式进气道溢流口这一关键部位所面临的三维复杂激波干扰问题,将溢流口提炼简化为V形钝前缘平板,采用激波风洞实验观测结合数值模拟的方法,研究了前体斜激波与V形钝前缘溢流口相对位置变化引起的激波干扰的演化规律。结果表明:由于V形钝前缘自身的激波干扰,其驻点前弓形激波的脱体距离较大,波后存在大范围的亚声速区。当斜激波入射在该弓形激波接近正激波的部分时,发生Edney第Ⅳa类激波干扰,该流动结构与V形钝前缘自身带来的三维激波干扰相互耦合,形成多处超声速射流区域;当斜激波入射在该弓形激波亚声速区的声速点附近时,呈现出不同于Edney第Ⅲ类激波干扰的波系结构;当斜激波入射在该弓形激波的超声速部分时,形成的波系结构与Edney第Ⅱ、Ⅵ类激波干扰类似。
  • 图  1  V形钝前缘平板示意图

    Figure  1.  Schematic of the V-shaped blunt leading edge plate

    图  2  纹影光路图

    Figure  2.  Diagram of the schlieren system

    图  3  实验模型

    Figure  3.  Experimental model

    图  4  V形钝前缘平板计算域

    Figure  4.  Computational domain of the V-shaped blunt leading edge plate

    图  5  V形钝前缘平板计算网格

    Figure  5.  Computational mesh of the V-shaped blunt leading edge plate

    图  6  斜激波入射V形钝前缘平板计算域

    Figure  6.  Computational domain of the V-shaped blunt leading edge plate with shock incidence

    图  7  x-z对称面波系结构

    Figure  7.  Shock structure in the x-z symmetry plane

    图  8  z方向波系结构比较

    Figure  8.  Comparison of shock structures viewing from the z direction

    图  9  V形钝前缘脱体激波与圆柱脱体激波对比

    Figure  9.  Comparison between the bow shock of the cylinder and V-shaped blunt leading edge

    图  10  流场三维激波面

    Figure  10.  Three-dimensional shock surface

    图  11  斜激波入射x/r=-10.5流场波系结构

    Figure  11.  Shock structure of the flowfield with the shock incidence at x/r=-10.5

    图  12  入射位置x/r=-3流场纹影

    Figure  12.  Schlieren images of the flowfield with the shock incidence at x/r=-3

    图  13  入射位置x/r=-3流场示意图

    Figure  13.  Schematic of the flowfield with the shock incidence at x/r=-3

    图  14  入射位置x/r=0.2流场纹影

    Figure  14.  Schlieren images of the flowfield with the shock incidence at x/r=0.2

    图  15  入射位置x/r=3流场纹影

    Figure  15.  Schlieren images of the flowfield with the shock incidence at x/r=3

    图  16  斜激波入射V形钝前缘三维流场示意图

    Figure  16.  Schematic of the shock interaction flowfield of the V-shaped blunt leading edge with shock incidence

    图  17  斜激波与V形溢流口波系干扰

    Figure  17.  Shock interactions between IS and the V-shaped blunt leading edge

    图  18  入射激波作用下V形钝前缘交叉倒圆位置激波干扰流场

    Figure  18.  Shock interactions near the crotch of the V-shaped blunt leading edge with shock incidence

    图  19  y方向实验纹影与CFD三维纹影对比

    Figure  19.  Comparison between the experimental schlieren and the three-dimensional numerical schlieren viewing from the y direction

  • [1] 吴子牛, 白晨媛, 李娟, 等.高超声速飞行器流动特征分析[J].航空学报, 2015, 36(1):58-85. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501007

    Wu Z N, Bai C Y, Li J, et al. Analysis of flow characteristics for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):58-85. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501007
    [2] 杨基明, 李祝飞, 朱雨建, 等.激波的传播与干扰[J].力学进展, 2016, 46:541-587. http://d.old.wanfangdata.com.cn/Periodical/lxjz201601013

    Yang J M, Li Z F, Zhu Y J, et al. Shock wave propagation and interactions[J]. Advances in Mechanics, 2016, 46:541-587. http://d.old.wanfangdata.com.cn/Periodical/lxjz201601013
    [3] Edney B. Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock[R]. Aeronautical Research Institute of Sweden, FEA Rept 115, 1968.
    [4] Gaitonde D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72:80-99. doi: 10.1016/j.paerosci.2014.09.002
    [5] Chu Y B, Lu X Y. Characteristics of unsteady type Ⅳ shock/shock interaction[J]. Shock Waves, 2012, 22(3):225-235. doi: 10.1007/s00193-012-0366-y
    [6] 王殿恺, 洪延姬, 李倩, 等.基于彩色纹影的Edney Ⅳ型激波相互作用研究[J].实验流体力学, 2013, 27(2):73-76. doi: 10.3969/j.issn.1672-9897.2013.02.014

    Wang D K, Hong Y J, Li Q, et al. Investigation of Edney Ⅳ shock interaction based on color Schlieren[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2):73-76. doi: 10.3969/j.issn.1672-9897.2013.02.014
    [7] Xiao F S, Li Z F, Zhu Y J, et al. Hypersonic type-Ⅳ shock/shock interactions on a blunt body with forward-facing cavity[J]. Journal of Spacecraft and Rockets, 2017, 54(2):504-510. doi: 10.2514/1.A33556
    [8] Boldyrev S M, Borovoy V Y, Chinilov A Y, et al. A thorough experimental investigation of shock/shock interferences in high Mach number flows[J]. Aerospace science and technology, 2001, 5(3):167-178. doi: 10.1016/S1270-9638(01)01094-X
    [9] Van Wie D M. Scramjet inlets[J]. Scramjet propulsion, 2000, 189:447-511. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200505004
    [10] Wieting A R, Holden M S. Experimental shock-wave interference heating on a cylinder at Mach 6 and 8[J]. AIAA Journal, 1989, 27(11):1557-1565. doi: 10.2514/3.10301
    [11] Barth J E, Wheatley V, Smart M K. Effects of hydrogen fuel injection in a Mach 12 scramjet inlet[J]. AIAA Journal, 2015, 53(10):2907-2919. doi: 10.2514/1.J053819
    [12] You Y C. An overview of the advantages and concerns of hypersonic inward turning inlets[R]. AIAA-2011-2269, 2011. doi: 10.2514/6.2011-2269
    [13] Malo-Molina F J, Gaitonde D V, Ebrahimi H B, et al. Three-dimensional analysis of a supersonic combustor coupled to innovative inward-turning inlets[J]. AIAA Journal, 2010, 48(3):572-582. doi: 10.2514/1.43646
    [14] Xiao F S, Li Z F, Zhang Z Y, et al. Hypersonic Shock Wave Interactions on a V-Shaped Blunt Leading Edge[J]. AIAA Journal, 2018, 56(1):356-367. doi: 10.2514/1.J055915
    [15] Segal C. The scramjet engine:processes and characteristics[M]. Cambridge University Press, 2009.
    [16] Mahapatra D, Jagadeesh G. Studies on unsteady shock interactions near a generic scramjet inlet[J]. AIAA Journal, 2009, 47(9):2223-2231. doi: 10.2514/1.41954
    [17] Jiao X L, Chang J T, Wang Z Q, et al. Mechanism study on local unstart of hypersonic inlet at high Mach number[J]. AIAA Journal, 2015, 53(10):3102-3112. doi: 10.2514/1.J053913
    [18] Li Z F, Gao W, Jiang H, et al. Unsteady behaviors of a hypersonic inlet caused by throttling in shock tunnel[J]. AIAA Journal, 2013, 51(10):2485-2492. doi: 10.2514/1.J052384
    [19] 李祝飞, 高文智, 李鹏, 等.一种进气道自起动特性检测方法[J].实验流体力学, 2013, 27(2):14-18. doi: 10.3969/j.issn.1672-9897.2013.02.003

    Li Z F, Gao W Z, Li P, et al. A test method for inlet self-starting ability detection[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2):14-18. doi: 10.3969/j.issn.1672-9897.2013.02.003
    [20] 凌岗, 李祝飞, 肖丰收, 等.低雷诺数下进气道异常起动现象及其影响因素探析[J].实验流体力学, 2014, 28(4):9-15. http://www.syltlx.com/CN/abstract/abstract10746.shtml

    Ling G, Li Z F, Xiao F S, et al. An exploration on the unusual self-starting behaviors of a hypersonic inlet under low Reynolds number condition[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(4):9-15. http://www.syltlx.com/CN/abstract/abstract10746.shtml
    [21] Settles G S, Hargather M J. A review of recent developments in schlieren and shadowgraph techniques[J]. Measurement Science and Technology, 2017, 28(4):1-25. http://adsabs.harvard.edu/abs/2017MeScT..28d2001S
    [22] Billig F S. Shock-wave shapes around spherical-and cylindrical-nosed bodies[J]. Journal of Spacecraft and Rockets, 1967, 4(6):822-823. doi: 10.2514/3.28969
    [23] Emanuel G, Hekiri H. Vorticity and its rate of change just downstream of a curved shock[J]. Shock Waves, 2007, 17(1-2):85-94. doi: 10.1007/s00193-007-0096-8
    [24] Grasso F, Purpura C, Chanetz B, et al. Type Ⅲ and type Ⅳ shock/shock interferences:theoretical and experimental aspects[J]. Aerospace Science and Technology, 2003, 7(2):93-106. doi: 10.1016/S1270-9638(02)00005-6
  • 加载中
图(19)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  223
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-05
  • 修回日期:  2018-03-18
  • 刊出日期:  2018-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日