留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加热方式对煤油燃料超声速燃烧室性能影响

宋文艳 王艳华

宋文艳, 王艳华. 加热方式对煤油燃料超声速燃烧室性能影响[J]. 实验流体力学, 2018, 32(5): 7-12. doi: 10.11729/syltlx20180014
引用本文: 宋文艳, 王艳华. 加热方式对煤油燃料超声速燃烧室性能影响[J]. 实验流体力学, 2018, 32(5): 7-12. doi: 10.11729/syltlx20180014
Song Wenyan, Wang Yanhua. Experimental study of the effects of heating methods on combustion characteristics in a supersonic combustor[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 7-12. doi: 10.11729/syltlx20180014
Citation: Song Wenyan, Wang Yanhua. Experimental study of the effects of heating methods on combustion characteristics in a supersonic combustor[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 7-12. doi: 10.11729/syltlx20180014

加热方式对煤油燃料超声速燃烧室性能影响

doi: 10.11729/syltlx20180014
详细信息
    作者简介:

    宋文艳(1967-), 女, 天津人, 博士, 教授。研究方向:超声速燃烧机理研究及流场光学测量技术。通信地址:陕西省西安市长安区东祥路1号西北工业大学长安校区动力与能源学院(710072)。E-mail:wenyan_song@nwpu.edu.cn

    通讯作者:

    宋文艳, E-mail: wenyan_song@nwpu.edu.cn

  • 中图分类号: V231.21

Experimental study of the effects of heating methods on combustion characteristics in a supersonic combustor

  • 摘要: 采用电阻加热燃烧室直连式试验台和甲烷燃烧加热燃烧室直连式试验台,开展了来流加热方式对煤油燃料超声速燃烧室燃烧性能的影响研究。在对比试验中,燃烧室入口纯净空气来流和污染空气来流均保持总温840K、总压820kPa和马赫数2.0的条件。利用高速摄像技术拍摄了煤油燃烧可见光图像,经分析处理得到了煤油燃烧火焰向主流的传播角度。对比试验结果显示:与电阻加热试验来流相比,甲烷燃烧加热来流的燃烧室壁面压力峰值下降了3.1%~6.9%,煤油燃烧可见光火焰向主流的传播角度缩小了7.1%~12.4%。
  • 图  1  电阻加热燃烧室直连式试验系统示意图

    Figure  1.  Direct-connected electric resistance heated facility

    图  2  甲烷燃烧加热燃烧室直连式试验系统示意图

    Figure  2.  Methane combustion heated facility

    图  3  双模态超声速燃烧室试验模型

    Figure  3.  Dual-mode supersonic combustor model

    图  4  高速摄像时均可见光火焰图像

    Figure  4.  Averaged flame luminosity image

    图  5  电阻加热和甲烷燃烧加热方式燃烧室冷流壁面压力对比

    Figure  5.  Comparison of wall pressure distribution along combustor in clean air and methane heated air (ERK=0)

    图  6  电阻加热方式燃烧室壁面压力分布

    Figure  6.  Combustor wall pressure distribution with clean air

    图  7  甲烷燃烧加热方式燃烧室壁面压力分布

    Figure  7.  Combustor wall pressure distribution with vitiated air

    图  8  纯净空气来流条件下高速摄像平均可见光火焰图像

    Figure  8.  The average flames images of clean air

    图  9  甲烷燃烧空气来流条件下高速摄像平均可见光火焰图像

    Figure  9.  The average flames images of vitiated air

    图  10  不同试验来流时火焰基底位置对比

    Figure  10.  Flame base location under clean air and vitiated air condition

    图  11  火焰传播角度随当量比变化关系

    Figure  11.  Flame spreading angles for clean air and vitiated air

  • [1] Guy R W, Rogers R C, Puster R L, et al. The NASA Langley scramjet test complex[R]. AIAA-1996-3243, 1996.
    [2] Powell E S, Stallings D W. A review of test medium contamination effects on test article combustion processes[R]. AIAA-1998-0557, 1998.
    [3] Pellett G L, Bruno C, Chinitz W. Review of air vitiation effects on scramjet ignition and flameholding combustion processes[R]. AIAA-2002-3880, 2002.
    [4] Edelman R B, Spadaccini L J. Theoretical effects of vitiated air contamination on ground testing of hypersonic airbreathing engines[J]. Jouranl of Spacecraft and Rockets, 1969, 6(12):1442-1447. doi: 10.2514/3.29844
    [5] Tirres C, Bradley M, Morrison C, et al. A flow quality analysis for future hypersonic vehicle testing[R]. AIAA-2002-2706, 2002.
    [6] Engelund W C, Holland S D, Cockrell C E Jr, et al. Aerodynamic data base development for the Hyper-X air frame-integrated scramjet propulsion experiments[J]. Journal of Spacecraft and Rockets, 2001, 38(6):803-810. doi: 10.2514/2.3768
    [7] Garrand D. A plan for defining the effects of test medium on hypersonic propulsion systems-where do we start[C]//Proc of JANNAF 25th Airbreathing Propulsion Subcommittee, 37th Combustion Subcommittee and 1st Modeling & Simulation Subcommittee Joint Meeting. 2008.
    [8] Goyne C P, Cresci D. Hy-V program overview and status[R]. AIAA-2008-2577, 2008.
    [9] Goyne C P, McDaniel J C Jr, Krauss R H, et al. Test gas vitiation effects in a dual-mode scramjet combustion[J]. Journal of Propulsion and Power, 2007, 23(3):559-565. doi: 10.2514/1.24663
    [10] Haw W L, Goyne C P, Rockwell R D, et al. Experiment study of vitiation effects on scramjet mode transition[J]. Journal of Propulsion and Power, 2011, 27(2):506-508. doi: 10.2514/1.49090
    [11] Rockwell R D, Goyne C P, Haw W L, et al. Experimental study of test-medium vitiation effects on dual-mode scramjet performance[J]. Journal of Propulsion and Power, 2011, 27(5):1135-1142. doi: 10.2514/1.B34180
    [12] Rockwell R D, Goyne C P, Haw W L, et al. Measurement of water vapor levels for investigating vitiation effects on scramjet performance[J]. Journal of Propulsion and Power, 2011, 27(6):1315-1317. doi: 10.2514/1.B34270
    [13] Noda J, Tomioka S, Izumikwa M, et al. Estimation of enthalpy effects in direct connect dual-mode combustor[J]. Journal of Thermal Science and Technology, 2011, 6(2):289-296. doi: 10.1299/jtst.6.289
    [14] Noda J, Masuya G, Tomioka S, et al. Comparison of dual-mode combustor performance with various heating methods[R]. AIAA-2011-6087, 2011.
    [15] Mitani T, Hiraiwa T, Sato S, et al. Comparison of scramjet engine performance in Mach 6 vitiated and storage-heated air[J]. Journal of Propulsion and Power, 1997, 13(5):635-642. doi: 10.2514/2.5228
    [16] Hiraiwa T, Sato S, Tomioka S, et al. Testing of a scramjet engine model in Mach 6 vitiated air flow[R]. AIAA-1997-0292, 1997.
    [17] Ingenito A. Theoretical investigation of air vitiation effects on hydrogen fuelled scramjet performance[J]. International Journal of Hydrogen Energy, 2015, 40(6):2862-2870. doi: 10.1016/j.ijhydene.2014.12.014
    [18] 邵菊香, 谈宁馨, 刘伟雄, 等.空气污染组分H2O和CO2对乙烯燃烧性能的影响(Ⅱ)-反应机理和动力学模拟[J].物理化学学报, 2010, 26(2):270-276. doi: 10.3866/PKU.WHXB20100140

    Shao J X, Tan N X, Liu W X, et al. Influence of H2O and CO2 in air on the combustion of ethylene(Ⅱ)-reaction mechanism and kinetics simulation[J]. Acta Physico-Chimica Sinica, 2010, 26(2):270-276. doi: 10.3866/PKU.WHXB20100140
    [19] 梁金虎, 王苏, 张灿, 等. H2O/CO2污染对RP-3航空煤油着火特性的影响[J].推进技术, 2015, 36(3):336-344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201503003

    Liang J H, Wang S, Zhang C, et al. Effects of H2O and CO2 on ignition characteristics of RP-3 aviation kerosene[J]. Journal of Propulsion Technology, 2015, 36(3):336-344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201503003
    [20] Würmel J, Silke E L, Curran H J, et al. The effect of diluent gases on ignition delay times in the shock tube and in the rapid compression machine[J]. Combustion and Flame, 2007, 151(1-2):289-302. doi: 10.1016/j.combustflame.2007.06.010
  • 加载中
图(11)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  133
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-01
  • 修回日期:  2018-05-21
  • 刊出日期:  2018-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日