留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多种组合动力方案性能对比研究

宋文艳 张冬青 吕重阳

宋文艳, 张冬青, 吕重阳. 多种组合动力方案性能对比研究[J]. 实验流体力学, 2018, 32(5): 19-28. doi: 10.11729/syltlx20180020
引用本文: 宋文艳, 张冬青, 吕重阳. 多种组合动力方案性能对比研究[J]. 实验流体力学, 2018, 32(5): 19-28. doi: 10.11729/syltlx20180020
Song Wenyan, Zhang Dongqing, Lyu Chongyang. Compared study of performances of combined cycle engines[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 19-28. doi: 10.11729/syltlx20180020
Citation: Song Wenyan, Zhang Dongqing, Lyu Chongyang. Compared study of performances of combined cycle engines[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 19-28. doi: 10.11729/syltlx20180020

多种组合动力方案性能对比研究

doi: 10.11729/syltlx20180020
详细信息
    作者简介:

    宋文艳(1967-), 女, 天津市人, 博士, 教授。研究方向:超声速燃烧机理及流场光学测量技术。通信地址:陕西省西安市长安区东祥路1号西北工业大学长安校区动力与能源学院(710072)。E-mail:wenyan_song@nwpu.edu.cn

    通讯作者:

    宋文艳, E-mail: wenyan_song@nwpu.edu.cn

  • 中图分类号: V430

Compared study of performances of combined cycle engines

  • 摘要: 针对目前国内外不同的TBCC组合动力概念方案进行了性能对比研究,主要包括:涡轮/亚燃冲压/双模态超燃冲压组合发动机、涡轮/引射冲压/双模超燃冲压组合发动机、射流预冷涡轮/双模态超燃冲压组合发动机和空气涡轮火箭/双模态超燃冲压组合发动机。通过发动机性能计算,获得了不同方案的高度、速度特性;基于马赫数6.5高超声速巡航飞行器相同的飞行任务和气动特性,计算比较了不同动力方案的飞行器航程、巡航距离和加速时间等性能参数。结果表明:涡轮/亚燃冲压/双模态超燃冲压组合发动机在4种方案中比冲最高;在相同的翼载和起飞推重比下,涡轮/亚燃冲压/双模态超燃冲压组合发动机具有最大的航程和巡航距离,但爬升加速时间最长;空气涡轮火箭/双模态超燃冲压组合发动机的航程和巡航距离最短,但加速性能较高,爬升加速时间最短。
  • 图  1  涡轮/亚燃冲压/双模态超燃冲压组合发动机

    Figure  1.  Turbine/Ramjet/Dual-mode Scramjet

    图  2  涡轮/引射冲压/双模态超燃冲压组合发动机

    Figure  2.  Turbine/Ejector Ramjet/ Dual-mode Scramjet

    图  3  射流预冷涡轮/双模态超燃冲压组合发动机

    Figure  3.  Pre-cooled Turbine /Dual-mode Scramjet

    图  4  空气涡轮火箭/双模态超燃冲压组合发动机

    Figure  4.  Air-turbo-rocket/ Dual-mode Scramjet

    图  5  引射冲压发动机模型示意图

    Figure  5.  Ejector Ramjet model

    图  6  飞行器受力分析图

    Figure  6.  Force analysis on aircraft

    图  7  涡轮/亚燃冲压/双模态超燃冲压组合发动机推力特性

    Figure  7.  Thrust performances of Turbine/Ramjet/Dual-mode Scramjet

    图  8  涡轮/亚燃冲压/双模态超燃冲压组合发动机比冲特性

    Figure  8.  Specific impulse performances of Turbine/Ramjet/Dual-mode Scramjet

    图  9  涡轮/引射冲压/双模态超燃冲压组合发动机推力特性

    Figure  9.  Thrust performances of Turbine/Ejector Ramjet/Dual-mode Scramjet

    图  10  涡轮/引射冲压/双模态超燃冲压组合发动机比冲特性

    Figure  10.  Specific impulse performances of Turbine/Ejector Ramjet/Dual-mode Scramjet

    图  11  射流预冷涡轮/双模态超燃冲压组合发动机推力特性

    Figure  11.  Thrust performances of Pre-cooled Turbine /Dual-mode Scramjet

    图  12  射流预冷涡轮/双模态超燃冲压组合发动机比冲特性

    Figure  12.  Specific impulse performances of Pre-cooled Turbine /Dual-mode Scramjet

    图  13  空气涡轮火箭/双模态超燃冲压组合发动机推力特性

    Figure  13.  Thrust performances of Air-turbo-rocket/ Dual-mode Scramjet

    图  14  空气涡轮火箭/双模态超燃冲压组合发动机比冲特性

    Figure  14.  Specific impulse performances of Air-turbo-rocket/Dual-mode Scramjet

    图  15  4种组合动力方案推力对比

    Figure  15.  Thrust comparison of four different combined schemes

    图  16  4种组合动力方案比冲对比

    Figure  16.  Specific impulse comparison of four different combined schemes

    图  17  文献[4, 22-23]高超声速飞行器飞行轨迹和本文确定的飞行轨迹

    Figure  17.  Flight trajectories of hypersonic aircrafts

    图  18  Sänger飞行器升力系数和阻力系数

    Figure  18.  Lift coefficient and drag coefficient of Sänger

    图  19  不同起飞推重比下的多种组合动力方案航程和巡航距离

    Figure  19.  The range and the cruise distance of different takeoff thrust-loading

    图  20  不同起飞推重比下的多种组合动力方案爬升加速时间和跨声速时间

    Figure  20.  The climb and acceleration time and the transonic time of different takeoff thrust-loading

    表  1  多种组合发动机工作状态及工作马赫数

    Table  1.   The modes of different combined cycle engines

    No. Scheme of combined engine Mode of engine Mach number
    1 TE/RJ/DMSJ Turbine 0~2.3
    Ramjet 2.0~4.0
    Dual-mode Scramjet 4.0~6.5
    2 TE/ERJ/DMSJ Turbine 0~2.3
    Ejector-mode of Ejector Ramjet 0.8~2.0
    Ramjet-mode of Ejector Ramjet 2.0~4.0
    Dual-mode Scramjet 4.0~6.5
    3 PCTE/DMSJ Pre-cooled Turbine 0~3.5
    Dual-mode Scramjet 3.5~6.5
    4 ATR/DMSJ Air-turbine-rocket 0~3.5
    Dual-mode Scramjet 3.5~6.5
    下载: 导出CSV

    表  2  发动机部分设计点热力循环参数

    Table  2.   Some thermodynamic cycle parameters of engines on design points

    Thermodynamic cycle parameter of engine value
    Total temperature of Turbine inlet/K 1650
    Total temperature of afterburner outlet/K 2050
    Pre-cooled temperature of PCTE/K 420
    Temperature of ATR gas generator outlet/K 1650
    Equivalence ratio of RJ 0.95
    Equivalence ratio of DMSJ 0.90
    Ratio of total temperature of ERJ primary flow to static temperature of free flow 10
    Ratio of total pressure of ERJ primary flow to static pressure of free flow 20
    下载: 导出CSV

    表  3  组合动力方案性能对比的不同飞行马赫数和高度

    Table  3.   The flight conditions of different combined schemes

    Parameter Value
    Ma 0 0.5 1.0 2.0 3.0 3.5 4.0 5.0 6.0
    h/km 0 3 11 13 18 20 22 24 28
    下载: 导出CSV

    表  4  高超声速飞行器的飞行轨迹

    Table  4.   The flight trajectories of hypersonic vehicle

    Phase Initial Mach number Final Mach number Initial attitude/km Final attitude/km
    1-2 0.00 0.29 0.0 0.0
    2-3 0.29 0.80 0.0 0.5
    3-4 0.80 0.90 0.5 11.0
    4-5 0.90 1.20 11.0 11.0
    5-6 1.20 2.00 11.0 13.0
    6-7 2.00 2.30 13.0 14.8
    7-8 2.30 2.50 14.8 15.7
    8-9 2.50 3.00 15.7 18.1
    9-10 3.00 3.50 18.1 20.1
    10-11 3.50 4.00 20.1 21.9
    11-12 4.00 4.50 21.9 23.5
    12-13 4.50 5.00 23.5 24.8
    13-14 5.00 5.50 24.8 26.0
    14-15 5.50 6.00 26.0 27.2
    15-16 6.00 6.50 27.2 28.2
    16-17 6.50 6.50 28.2 28.2
    下载: 导出CSV
  • [1] Bartolotta P A, McNelis N B, Shafer D G. High speed turbines: development of a turbine accelerator (RTA) for space access[R]. AIAA-2003-6943, 2003.
    [2] Hagseth P E, Benner K W, Gillen S, et al. Technology deve-lopment for high speed/hypersonic applications[R]. AIAA-2005-3212, 2005.
    [3] Carter P, Balepin V V. Mass injection and precompressor cooling engines analyses[R]. AIAA-2002-4127, 2002.
    [4] Balepin V. Liston G W. The SteamJetTM: Mach 6+ turbine engine with inlet air conditioning[R]. AIAA-2001-3238, 2001.
    [5] Sato T, Tanatsugu N, Hatta H, et al. Development study of the ATREX engine for TSTO spaceplane[R]. AIAA-2001-1839, 2001.
    [6] Isomura K, Omi J, Murooka T, et al. A feasibility study of an ATREX engine at approved technology levels[R]. AIAA-2001-1836, 2001.
    [7] Sawai S, Sato T, Kobayashi H, et al. Flight test plan for ATREX engine development[R]. AIAA-2003-7027, 2003.
    [8] Harada K, Tanatsugu N, Sato T. Development study on precooler for ATREX engine[R]. AIAA-1999-4897, 1999.
    [9] Kojima T, Tanatsugu N, Sato T, et al. Development study on axisymmetric air inlet for ATREX engine[R]. AIAA-2001-1895, 2001.
    [10] Bulman M J, Siebenhaar A. Combined cycle propulsion: aerojet innovations for practical hypersonic vehicles[R]. AIAA-2011-2397, 2011.
    [11] Siebenhaar A, Bogar T J. Integration and vehicle performance assessment of the aerojet "Trijet" combined-cycle engine[R]. AIAA-2009-7420, 2009.
    [12] 廉筱纯, 吴虎.航空发动机原理[M].西安:西北工业大学出版社, 2005.
    [13] Sellers J F, Daniele C J. DYNGEN: a program for calculating steady-state and transient performance of turbojet and turbofan engines[R]. NASA-TN-D-7901, 1975.
    [14] 骆广琦, 桑增产, 王如根, 等.航空燃气涡轮发动机数值仿真[M].北京:国防工业出版社, 2007.
    [15] 商旭升, 蔡元虎, 陈玉春, 等.高速飞行器用射流预冷却涡轮基发动机性能模拟[J].中国空间科学技术, 2005, 25(4):54-58. doi: 10.3321/j.issn:1000-758X.2005.04.009

    Shang X S, Cai Y H, Chen Y C, et al. Performance simulation of the mass injection pre-cooled TBCC engine for hypersonic vehicles[J]. Chinese Space Science and Technology, 2005, 25(4):54-58. doi: 10.3321/j.issn:1000-758X.2005.04.009
    [16] 陈湘, 陈玉春, 屠秋野, 等.空气涡轮火箭发动机的性能研究[J].弹箭与制导学报, 2009, 29(2):162-165. doi: 10.3969/j.issn.1673-9728.2009.02.046

    Chen X, Chen Y C, Tu Q Y, et al. Research on performance of air-turbo-rocket[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(2):162-165. doi: 10.3969/j.issn.1673-9728.2009.02.046
    [17] 李文龙, 郭海波, 南向谊.空气涡轮火箭发动机热力循环特性分析[J].火箭推进, 2015, 41(4):48-54. doi: 10.3969/j.issn.1672-9374.2015.04.008

    Li W L, Guo H B, Nan X Y. Analysis on thermodynamic cycle characteristics of air-turbo-rocket engine[J]. Journal of Rocket Propulsion, 2015, 41(4):48-54. doi: 10.3969/j.issn.1672-9374.2015.04.008
    [18] 潘宏亮, 林彬彬, 刘洋.加力式空气涡轮火箭发动机特性研究[J].固体火箭发动机技术, 2010, 33(6):650-665. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201006011

    Pan H L, Lin B B, Liu Y. Performance study on air turbo rocket in augmented mode[J]. Journal of Solid Rocket Technology, 2010, 33(6):650-665. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201006011
    [19] Heiser W H, Pratt D T, Daley D H, et al. Hypersonic airbreathing propulsion[M]. Reston, VA:AIAA Education, 1994.
    [20] Mattingly J D, Heiser W H, Pratt D T. Aircraft engine design[M]. 2nd ed. Reston, VA:AIAA Education, 2002.
    [21] Walker S, Tang M, Mamplata C. TBCC propulsion for a Mach 6 hypersonic airplane[R]. AIAA-2009-7238, 2009.
    [22] Kloesel K J, Ratnayake N A, Clark C M. A technology pathway for airbreathing, combined-cycle, horizontal space launch through SR-71 based trajectory modeling[R]. AIAA-2011-2229, 2011.
    [23] Tzong G, Jacobs R, Liguore S. Predictive capability for hypersonic structural response and life prediction: Phase 1-identification of knowledge gaps[R]. Air Force Research Laboratory-RB-WP-TR-2010-3068, 2010.
    [24] Tang M, Mamplata C. Two steps instead of a giant leap-an approach for air breathing hypersonic flight[R]. AIAA-2011-2237, 2011.
    [25] Hirschel E H, Weiland C. Selected aerothermodynamic design problems of hypersonic flight vehicles[M]. Berlin:Springer Science and Business Media, 2009.
    [26] Anderson D, Tannehill J C, Pletcher R H. Computational fluid mechanics and heat transfer[M]. 3rd ed. Boca Raton:CRC Press, 2012.
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  603
  • HTML全文浏览量:  243
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-01
  • 修回日期:  2018-04-25
  • 刊出日期:  2018-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日