留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

隔离段横向喷流作用下激波串运动特性研究

李一鸣 李祝飞 杨基明 吴颖川

李一鸣, 李祝飞, 杨基明, 等. 隔离段横向喷流作用下激波串运动特性研究[J]. 实验流体力学, 2018, 32(5): 1-6. doi: 10.11729/syltlx20180023
引用本文: 李一鸣, 李祝飞, 杨基明, 等. 隔离段横向喷流作用下激波串运动特性研究[J]. 实验流体力学, 2018, 32(5): 1-6. doi: 10.11729/syltlx20180023
Li Yiming, Li Zhufei, Yang Jiming, et al. Characteristics of the shock train motions caused by transverse injections into the isolator[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 1-6. doi: 10.11729/syltlx20180023
Citation: Li Yiming, Li Zhufei, Yang Jiming, et al. Characteristics of the shock train motions caused by transverse injections into the isolator[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 1-6. doi: 10.11729/syltlx20180023

隔离段横向喷流作用下激波串运动特性研究

doi: 10.11729/syltlx20180023
基金项目: 

国家自然科学基金项目 11402263

国家自然科学基金项目 11621202

详细信息
    作者简介:

    李一鸣(1993-), 男, 陕西汉中人, 博士研究生。研究方向:高超声速空气动力学, 吸气式推进系统及高超声速进气道。通信地址:安徽省合肥市中国科学技术大学工程科学学院近代力学系(230027)。E-mail:liyiming@mail.ustc.edu.cn

    通讯作者:

    李祝飞, lizhufei@ustc.edu.cn

  • 中图分类号: V211.48

Characteristics of the shock train motions caused by transverse injections into the isolator

  • 摘要: 在马赫数6的激波风洞中,通过隔离段壁面处的横向喷流控制隔离段反压,借助高速纹影和壁面静压测量,研究了二元进气道/隔离段内激波串运动特性。结果表明:进气道起动后,流场中的反射波系构成了背景激波;开启横向喷流后,隔离段下游气流不断蓄积使得反压升高,隔离段内出现激波串。在反压作用下,激波串逐渐前移,其前沿激波的形态和前移速度受上游背景激波的影响而发生变化;背景激波入射壁面的区域自身存在较强的逆压梯度,能够增强与入射点同侧的前沿激波分支,使得前沿激波急剧前移。前沿激波被推出隔离段后,在进气道肩点附近短暂振荡,反压进一步增大后,进气道不起动并出现喘振。关闭喷流使反压降低后,进气道再起动。
  • 图  1  二元进气道模型

    Figure  1.  Two-dimensional inlet model

    图  2  喷流系统

    Figure  2.  Jet flow system

    图  3  进气道上壁面压强信号

    Figure  3.  Pressure time history on upper wall of the inlet

    图  4  背景激波纹影

    Figure  4.  Schlieren of background shock

    图  5  对称面数值纹影和壁面压强

    Figure  5.  Numerical schlieren on the symmetry plane and wall pressure

    图  6  流场x-t

    Figure  6.  x-t diagram of the schlieren

    图  7  激波串生成初期纹影

    Figure  7.  Schlieren of the shock train formation

    图  8  激波串在背景激波入射点附近的纹影

    Figure  8.  Schlieren of the shock train near the incident point of the background shock

    图  9  背景流场逆压梯度分布示意图

    Figure  9.  Schematic of adverse pressure gradient in the background flow field

    图  10  激波串在肩点附近振荡时纹影

    Figure  10.  Schlieren of the shock train oscillating near the shoulder

    图  11  "喘振"纹影

    Figure  11.  Schlieren of the "buzz"

    图  12  进气道再起动阶段纹影

    Figure  12.  Schlieren of the inlet restart process

  • [1] Heiser W H, Pratt D T, Daley D H, et al. Hypersonic airbreathing propulsion[M]. Reston, VA:AIAA, 1994.
    [2] Waltrup P J, Billig F S. Structure of shock waves in cylindrical ducts[J]. AIAA Journal, 1973, 11(10):1404-1408. doi: 10.2514/3.50600
    [3] Billig F S. Research on supersonic combustion[J]. Journal of Propulsion and Power, 1999, 9(4):499-514. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201608024
    [4] Smart M K. Flow modeling of pseudoshocks in backpressured ducts[J]. AIAA Journal, 2015, 53(12):3577-3588. doi: 10.2514/1.J054021
    [5] Shapiro A H. The dynamics and thermodynamics of compressible fluid flow[M]. New York:Wiley, 1953.
    [6] 苏纬仪, 王赫, 陈云, 等.壁温对隔离段激波串振荡的影响[J].航空动力学报, 2017, 32(7):1605-1612. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201707010

    Su W Y, Wang H, Chen Y, et al. Effects of wall temperature on pseudo-shock oscillations in isolator[J]. Journal of Aerospace Power, 2017, 32(7):1605-1612. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201707010
    [7] 马广甫, 谢文忠, 林宇, 等.二元超声速进气道扩张段内伪激波特性[J].航空动力学报, 2017, 32(8):1950-1961. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201708019

    Ma G F, Xie W Z, Lin Y, et al. Pseudo-shock characteristics in the two-dimensional supersonic inlet diffuser[J]. Journal of Aerospace Power, 2017, 32(8):1950-1961. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201708019
    [8] Huang H X, Tan H J, Sun S, et al. Behavior of shock train in curved isolators with complex background waves[J]. AIAA Journal, 2017, 56(1):1-13. http://cn.bing.com/academic/profile?id=438d0e13d1d367f364e3216031f6e0f3&encoded=0&v=paper_preview&mkt=zh-cn
    [9] Xu K J, Chang J T, Zhou W X, et al. Mechanism of shock train rapid motion induced by variation of attack angle[J]. Acta Astronautica, 2017, 140:18-26. doi: 10.1016/j.actaastro.2017.08.009
    [10] Li N, Chang J T, Xu K J, et al. Prediction dynamic model of shock train with complex background waves[J]. Physics of Fluids, 2017, 29(11):116103. doi: 10.1063/1.5000876
    [11] 熊冰, 王振国, 范晓樯, 等.隔离段内正激波串受迫振荡特性研究[J].推进技术, 2017, 38(1):1-7. http://d.old.wanfangdata.com.cn/Periodical/tjjs201701001

    Xiong B, Wang Z G, Fan X Q, et al. Characteristics of forced normal shock-train oscillation in isolator[J]. Journal of Propulsion Technology, 2017, 38(1):1-7. http://d.old.wanfangdata.com.cn/Periodical/tjjs201701001
    [12] 田旭昂, 王成鹏, 程克明. Ma5斜激波串动态特性实验研究[J].推进技术, 2014, 35(8):1030-1039. http://d.old.wanfangdata.com.cn/Periodical/tjjs201408004

    Tian X A, Wang C P, Cheng K M. Experimental investigation of dynamic characteristics of oblique shock train in Mach 5 flow[J]. Journal of Propulsion Technology, 2014, 35(8):1030-1039. http://d.old.wanfangdata.com.cn/Periodical/tjjs201408004
    [13] Tan H J, Li L G, Wen Y F, et al. Experimental investigation of the unstart process of a generic hypersonic inlet[J]. AIAA Journal, 2011, 42(2):279-288. http://cn.bing.com/academic/profile?id=07632c8aaa031462506568ca4882670f&encoded=0&v=paper_preview&mkt=zh-cn
    [14] Li N, Chang J T, Yu D R, et al. Mathematical model of shock-train path with complex background waves[J]. Journal of Propulsion and Power, 2016, 33(2):468-478. http://cn.bing.com/academic/profile?id=abd32ddb63b6023977c23c747987d7ba&encoded=0&v=paper_preview&mkt=zh-cn
    [15] Xu K J, Chang J T, Zhou W X, et al. Mechanism and prediction for occurrence of shock-train sharp forward movement[J]. AIAA Journal, 2016, 54(1):1403-1412. http://cn.bing.com/academic/profile?id=65f756e400b39cf125c82f075c0b319e&encoded=0&v=paper_preview&mkt=zh-cn
    [16] 浮强, 宋文艳, 韩小宝, 等.双模态燃烧室隔离段激波串位置的测量及控制[J].航空计算技术, 2017, 47(2):20-24. doi: 10.3969/j.issn.1671-654X.2017.02.006

    Fu Q, Song W Y, Han X B, et al. Dual-mode scramjet isolator shock train leading edge measurement and control[J]. Aeronautical Computing Technique, 2017, 47(2):20-24. doi: 10.3969/j.issn.1671-654X.2017.02.006
    [17] Ridings A N, Smart M K. Flow establishment of precombustion shock trains in a shock tunnel[J]. AIAA Journal, 2017, 55(9):2902-2911. doi: 10.2514/1.J055590
    [18] Chang J T, Li N, Xu K J, et al. Recent research progress on unstart mechanism, detection and control of hypersonic inlet[J]. Progress in Aerospace Sciences, 2017, 89:1-22. doi: 10.1016/j.paerosci.2016.12.001
    [19] Gnani F, Zare-Behtash H, Kontis K. Pseudo-shock waves and their interactions in high-speed intakes[J]. Progress in Aerospace Sciences, 2016, 82:36-56. doi: 10.1016/j.paerosci.2016.02.001
    [20] Do H, Im S K, Mungal M G, et al. The Influence of boundary layers on supersonic inlet flow unstart induced by mass injection[J]. Experiments in Fluids, 2011, 51(3):679-691. doi: 10.1007/s00348-011-1077-3
    [21] 李祝飞, 高文智, 李鹏, 等.二元高超声速进气道激波振荡特性实验[J].推进技术, 2012, 33(5):676-682. http://d.old.wanfangdata.com.cn/Periodical/tjjs201205003

    Li Z F, Gao W Z, Li P, et al. Experimental investigation on the shock wave oscillation behaviors in a two-dimensional hypersonic inlet flow[J]. Journal of Propulsion Technology, 2012, 33(5):676-682. http://d.old.wanfangdata.com.cn/Periodical/tjjs201205003
    [22] Li Z F, Gao W Z, Jiang H L, et al. Unsteady behaviors of a hypersonic inlet caused by throttling in shock tunnel[J]. AIAA Journal, 2013, 51(10):2485-2492. doi: 10.2514/1.J052384
    [23] 李祝飞, 高文智, 杨基明.一种二元进气道起动特性的数值与实验考察[J].推进技术, 2016, 37(7):1224-1232. http://d.old.wanfangdata.com.cn/Periodical/tjjs201607004

    Li Z F, Gao W Z, Yang J M. Numerical and experimental investigation for starting characteristics of a two-dimensional inlet[J]. Journal of Propulsion Technology, 2016, 37(7):1224-1232. http://d.old.wanfangdata.com.cn/Periodical/tjjs201607004
  • 加载中
图(12)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  110
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-23
  • 修回日期:  2018-04-11
  • 刊出日期:  2018-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日