留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直升机防除冰系统人工结冰试验

任智勇 李志鹏 王俊琦 马丁峰

任智勇, 李志鹏, 王俊琦, 等. 直升机防除冰系统人工结冰试验[J]. 实验流体力学, 2019, 33(5): 64-69. doi: 10.11729/syltlx20180077
引用本文: 任智勇, 李志鹏, 王俊琦, 等. 直升机防除冰系统人工结冰试验[J]. 实验流体力学, 2019, 33(5): 64-69. doi: 10.11729/syltlx20180077
Ren Zhiyong, Li Zhipeng, Wang Junqi, et al. Artificial icing tests of the helicopter anti-icing system[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 64-69. doi: 10.11729/syltlx20180077
Citation: Ren Zhiyong, Li Zhipeng, Wang Junqi, et al. Artificial icing tests of the helicopter anti-icing system[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 64-69. doi: 10.11729/syltlx20180077

直升机防除冰系统人工结冰试验

doi: 10.11729/syltlx20180077
详细信息
    作者简介:

    任智勇(1990-), 男, 陕西西安人, 硕士, 工程师。研究方向:气动热数值计算与工程估算, 直升机发动机飞行试验。通信地址:陕西省西安市阎良区试飞院路8号73信箱总体所(710089)。E-mail:renzy0315@126.com

    通讯作者:

    任智勇, E-mail: renzy0315@126.com

  • 中图分类号: V217+.3

Artificial icing tests of the helicopter anti-icing system

  • 摘要: 为掌握结冰条件下直升机旋翼、发动机、进气道防除冰系统的性能规律,在不同液态水含量和大气温度下,开展了地面和悬停两种状态直升机人工结冰试验,研究旋翼、发动机、进气道防除冰系统在结冰环境中的相互影响。研究发现:受旋翼旋转影响,右发进气道较左发更容易结冰;发动机低功率状态下,防冰性能较差,状态升高后,防冰性能改善;旋翼结冰导致发动机状态升高,使进气道表面温度较无结冰时仍有上升。同时,旋翼上周期性的"结冰-脱除",导致发动机参数振荡,振荡周期受环境条件影响不大,而振幅与液态水含量近似呈线性关系。
  • 图  1  直升机与结冰喷洒塔示意图

    Figure  1.  Sketch of helicopter and the spray tower

    图  2  左发进气道传感器位置

    Figure  2.  Positions of temperature transducers on left inlet

    图  3  防除冰试验状态点

    Figure  3.  Anti-icing experiment points

    图  4  右发参数振荡曲线

    Figure  4.  Curve of parameters fluctuation of the right engine

    图  5  扭矩振幅AM与液态水含量L的关系

    Figure  5.  Relation of AM and L(liquid water content)

    表  1  正向结冰试验左、右发试验结果

    Table  1.   Results of both engines in forward direction test

    Condition T45, l/℃ T45, r/℃ Ql Qr Tt, l/℃ Tt, r/℃ Tw, l/℃ Tw, r/℃
    Before bleeding b-68.1 b-81.0 - - - - d-31.2 d-32.7
    After bleeding and before icing b-31.4 b-46.3 0.945 0.941 c-1.4 c-4.8 d-2.4 d-4.1
    Icing steadily b+67.0 b+57.7 0.936 0.954 c+28.4 c+26.6 d+5.1 d-0.3
    下载: 导出CSV

    表  2  两次结冰试验时发动机及进气道参数比较

    Table  2.   Comparison of engines and inlets parameters in two flight tests

    No. Condition T0/℃ L/(g·m-3) Ng/% T45/℃ M Tt/℃ Q Tw/℃
    1 Ground fly -18.4 1 a+0.3 b+64.0 49.8 c+29.0 0.753 d+0.3
    2 Hover -17.2 1 a+4.1 b+173.3 79.0 c+53.3 0.783 d+6.6
    3 Hover without spraying -17.2 0 a+0.8 b+110.0 56.0 c+40.2 0.873 d+4.9
    下载: 导出CSV

    表  3  不同试验中的扭矩振幅和周期时长

    Table  3.   Comparison of amplitude and cycle time of different tests

    T0/℃ L/(g·m-3) Tc/s AM
    -18.1 0 - 0
    -20.4 0.25 Unclear 4.0
    -25.1 0.25 Unclear 2.6
    -13.4 0.25 74 3.8
    -17.5 0.50 77 9.0
    -17.0 0.50 81 8.8
    -15.0 0.75 86 13.4
    -18.2 0.75 84 14.4
    -11.9 1.00 75 17.2
    -18.4 1.00 81 22.4
    -14.3 1.00 77 18.8
    下载: 导出CSV
  • [1] Korkan K D, Dadone L, Shaw R J. Performance degradation of helicopter rotor in forward flight due to ice[J]. Journal of Aircraft, 1985, 22(8):713-718. doi: 10.2514/3.45191
    [2] Han Y Q, Palacios J. Airfoil-performance-degradation prediction based on nondimensional icing parameters[J]. AIAA Journal, 2013, 51(11):2570-2581. doi: 10.2514/1.J052207
    [3] 蒋浩, 金龙, 牛上维, 等.基于合成热射流的机翼除冰实验研究[J].实验流体力学, 2017, 31(3):94-100. http://www.syltlx.com/CN/abstract/abstract11031.shtml

    Jiang H, Jin L, Niu S W, et al. Experimental analysis of de-icing on airfoil using heated dual synthetic jet actuators[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3):94-100. http://www.syltlx.com/CN/abstract/abstract11031.shtml
    [4] 李斯, 于雷, 金沙, 等.移动式冰风洞试验方法研究和应用[J].空气动力学学报, 2017, 35(6):855-859. doi: 10.7638/kqdlxxb-2015.0121

    Li S, Yu L, Jin S, et al. Study and application of movable icing wind tunnel test method[J]. Acta Aerodynamica Sinica, 2017, 35(6):855-859. doi: 10.7638/kqdlxxb-2015.0121
    [5] KorkanK D, Cross E J Jr, Miller T L. Performance degradation of a model helicopter rotor with a generic ice shape[J]. Journal of Aircraft, 2015, 21(10):823-830. http://cn.bing.com/academic/profile?id=42e8d9e3082ee60f175957216434b962&encoded=0&v=paper_preview&mkt=zh-cn
    [6] 孔满昭, 段卓毅, 马玉敏.机翼展向不同部位结冰对飞机气动力特性影响研究[J].实验流体力学, 2016, 30(2):32-37. http://www.syltlx.com/CN/abstract/abstract10914.shtml

    Kong M Z, Duan Z Y, Ma Y M. Study on aerodynamic characteristics of ice accretion in different wing span sections[J]. Journal of experiments in fluid mechanics, 2016, 30(2):32-37. http://www.syltlx.com/CN/abstract/abstract10914.shtml
    [7] Ahn G B, Jung K Y, Myong R S. Numerical and experimental investigation of ice accretion on rotorcraft engine air intake[J]. Journal of Aircraft, 2015, 52(3):903-909. doi: 10.2514/1.C032839
    [8] 李岩, 孙策, 郭文峰, 等.利用自然低温的旋转叶片结冰风洞试验系统设计[J].实验流体力学, 2018, 32(2):40-47. http://www.syltlx.com/CN/abstract/abstract11093.shtml

    Li Y, Sun C, Guo W F, et al. Design of icing wind tunnel experiment system for rotating blades by using natural low temperature[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2):40-47. http://www.syltlx.com/CN/abstract/abstract11093.shtml
    [9] Potapczuk M G. Aircraft icing research at NASA glenn research center[J]. Journal of Aerospace Engineering, 2013, 26(2):260-276. doi: 10.1061/(ASCE)AS.1943-5525.0000322
    [10] Flegel A B, Oliver M J. Preliminary results from a heavily instrumented engine ice crystal icing test in a ground based altitude test facility[R]. AIAA-2016-3894, 2016.
    [11] Hanks M L, Higgins L B, Diekmann V L. Artificial and natural icing tests production UH-60a helicopter[R]. USAAEFA-79-19, 1980.
    [12] Flemming R J, Alldridge P, Doeppner R. Artificial icing tests of the S-92A helicopter in the McKinley climatic laboratory[R]. AIAA-2004-737, 2004.
    [13] Hoff S V, Vorst J, Flemming R J, et al. Icing certification of korean utility helicopter KUH-1: artificial icing flight test[R]. AIAA-2017-3930, 2017.
    [14] Simpson M P, Render P M. Certification and operation of helicopters in icing environments[J]. Journal of Aircraft, 1998, 35(6):936-941. doi: 10.2514/2.2389
    [15] Directorate F T. Aircraft natural/artificial icing[R]. Test Operations Procedure(TOP) 7-3-537, 2009.
    [16] 侯盼雪.直升机发动机进气道防冰数值仿真研究[D].北京: 北京航空航天大学, 2012.

    Hou P X. Numerical simulation of anti-icing system on helicopter engine inlet[D]. Beijing: Beihang university, 2012.
    [17] Drury M D, Szefi J T, Palacios J L. Full-scale testing of a centrifugally powered pneumatic de-icing system for helicopter rotor blades[J]. Journal of Aircraft, 2017, 54(1):220-228. doi: 10.2514/1.C033965
    [18] 刘国强, 于琦, 董明明, 等.旋翼结冰对"黑鹰"直升机飞行性能影响分析[J].航空科学技术, 2013(1):34-37. doi: 10.3969/j.issn.1007-5453.2013.01.010

    Liu G Q, Yu Q, Dong M M, et al. The influence of rotor icing to the flight performance of black hawk helicopter[J]. Aeronautical Science and Technology, 2013(1):34-37. doi: 10.3969/j.issn.1007-5453.2013.01.010
    [19] Kreeger R E, Douglass R, Gazella M, et al. Analysis and prediction of ice shedding for a full-scale heated tail rotor[R]. AIAA-2016-3443, 2016.
    [20] Bain J, Cajigas J, Sankar L, et al. Prediction of rotor blade ice shedding using empirical methods[R]. AIAA-2010-7985, 2010.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  408
  • HTML全文浏览量:  161
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-29
  • 修回日期:  2019-08-14
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日