留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乘波概念应用于吸气式高超声速飞行器机体/进气道一体化设计方法研究综述

丁峰 柳军 沈赤兵 刘珍 陈韶华 黄伟

丁峰, 柳军, 沈赤兵, 等. 乘波概念应用于吸气式高超声速飞行器机体/进气道一体化设计方法研究综述[J]. 实验流体力学, 2018, 32(6): 16-26. doi: 10.11729/syltlx20180080
引用本文: 丁峰, 柳军, 沈赤兵, 等. 乘波概念应用于吸气式高超声速飞行器机体/进气道一体化设计方法研究综述[J]. 实验流体力学, 2018, 32(6): 16-26. doi: 10.11729/syltlx20180080
Ding Feng, Liu Jun, Shen Chibing, et al. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 16-26. doi: 10.11729/syltlx20180080
Citation: Ding Feng, Liu Jun, Shen Chibing, et al. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 16-26. doi: 10.11729/syltlx20180080

乘波概念应用于吸气式高超声速飞行器机体/进气道一体化设计方法研究综述

doi: 10.11729/syltlx20180080
基金项目: 

国家自然科学基金项目 11702322

湖南省自然科学基金项目 2018JJ3589

详细信息
    作者简介:

    丁峰(1988-), 男, 山东梁山人, 博士, 讲师。研究方向:高超声速飞行器气动设计、进气道设计以及机体/推进一体化。通信地址:湖南省长沙市开福区德雅路109号(410073)。E-mail:dingcuifengdcf@163.com

    通讯作者:

    柳军, E-mail:liujun@nudt.edu.cn

  • 中图分类号: V130.25

An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles

  • 摘要: 乘波体构型应用于吸气式高超声速飞行器设计主要有两大优势:一是可以高效地捕获预压缩后的气流;二是通过优化,可以实现飞行器的高升阻比性能设计。基于这两个优势,乘波概念应用于高超声速飞行器机体/进气道气动一体化设计可分为两大类:乘波前体/进气道一体化设计和乘波机体/进气道一体化设计,前者主要利用乘波体高效捕获预压缩气流的特性,而后者则同时利用乘波设计的两个优势。本文总结了国内外学者将乘波概念应用于机体/进气道一体化设计的两大类方法,对其进行了较为细致的分类,归纳总结出"通过设计基准流场进行流向设计、应用吻切理论或几何拼接方法进行展向设计"的总体设计思路,分析了今后的研究发展趋势。
  • 图  1  乘波前体作为第一级预压缩面的前体/进气道一体化构型[15]

    Figure  1.  Waverider forebody used as the first pre-compression surface[15]

    图  2  乘波前体作为整个预压缩面的前体/进气道一体化构型[16-17]

    Figure  2.  Waverider forebody used as the whole pre-compression surface[16-17]

    图  3  变楔角楔导乘波前体[20]

    Figure  3.  Variable wedge angle forebody model

    图  4  二维曲面压缩基准流场结构图[21]

    Figure  4.  Basic flow field of 2D curved surface-compression flow[21]

    图  5  二维曲面压缩乘波前体/进气道一体化设计方案三维视图[21]

    Figure  5.  2D curved surface-compression waverider forebody/inlet integration configuration[21]

    图  6  曲面锥乘波前体波系结构[26-27]

    Figure  6.  Shock wave system of curved cone waverider forebody[26-27]

    图  7  内锥流场结构示意图[29, 33]

    Figure  7.  Flow field structure of inward turning cone[29, 33]

    图  8  楔-锥乘波体示意图

    Figure  8.  Wedge-cone waverider

    图  9  三级压缩基准流场[43]

    Figure  9.  Schematic illustration of basic flow field of multistage compression waverider with three-stage compression ramps[43]

    图  10  三级压缩吻切锥乘波体[43]

    Figure  10.  Geometric models of three-stage compression osculating-cone-derived waverider[43]

    图  11  三级压缩吻切锥乘波前体/进气道一体化构型[46]

    Figure  11.  Three-stage compression osculating-cone-derived waverider forebody/inlet integration configuration[46]

    图  12  曲面锥乘波前体/进气道一体化构型的数值模拟横截面激波形态[17]

    Figure  12.  Cross-section shock wave shapes obtained from numerical simulation for curved cone waverider/inlet integrated vehicle[17]

    图  13  吻切内锥乘波前体/进气道一体化构型[29, 33]

    Figure  13.  Osculating inward turning cone waverider/inlet integrated vehicle[29, 33]

    图  14  吻切平面外压缩激波流场结构示意图[52]

    Figure  14.  Rodi's basic flow field with an external compression shock wave in an osculating plane[52]

    图  15  “双乘波”设计概念原理图[53]

    Figure  15.  Design principle of dual waverider concept[53]

    图  16  单流道“双乘波”前体/进气道一体化构型[53]

    Figure  16.  Dual waverider forebody/inlet integrated vehicle with single flowpath[53]

    图  17  两流道“双乘波”前体/进气道一体化构型[54]

    Figure  17.  Dual waverider forebody/inlet integrated vehicle with double flowpaths[54]

    图  18  吻切锥乘波前体/两侧内收缩进气道一体化构型[55]

    Figure  18.  Integrated design of waverider forebody and lateral hypersonic inward turning inlets[55]

    图  19  双乘波体旋转对拼式前体设计[58]

    Figure  19.  Design of airplane forebody by rotating and assembling two waveriders

    图  20  双乘波对拼式前体/进气道一体化构型[58]

    Figure  20.  Design example of double-flanking waverider forebody/inlet integration vehicle[58]

    图  21  被圆锥激波包裹的锥导乘波机体/进气道一体化构型及发动机安装位置[1]

    Figure  21.  Cone-derived waverider airframe/inlet integration wrapped by conical shock wave and arrangement position of engine boxes[1]

    图  22  楔导乘波机体/进气道一体化构型及发动机安装位置[61]

    Figure  22.  Wedge-derived waverider airframe/inlet integration and arrangement position of engine boxes[61]

    图  23  基准流场相交式机体/进气道一体化设计[63]

    Figure  23.  Schematic representation of basic-flow-field-intersection waverider airframe/inlet integration[63]

    图  24  “全乘波”机体/进气道一体化设计原理[64]

    Figure  24.  Schematic representation of full waverider airframe/inlet integration[64]

    图  25  吻切锥乘波机体/两侧内收缩进气道一体化构型[65]

    Figure  25.  Osculating cone waverider airframe integrated with double inward turning inlets configuration[65]

  • [1] O'Neill M K L. Optimized scramjet engine integration on a waverider airframe[D]. College Park, MD: University of Maryland College Park, 1992.
    [2] O'Neill M K L, Lewis M J. Optimized scramjet integration on a waverider[J]. Journal of Aircraft, 1992, 29(6):1114-1121. doi: 10.2514/3.56866
    [3] Heiser W H, Pratt D T. Hypersonic airbreathing propulsion[M]. USA:AIAA Inc, 1994.
    [4] Haney J W, Beaulieu W D. Waverider inlet integration issues[R]. AIAA-1994-383, 1994.
    [5] 尤延铖, 梁德旺, 郭荣伟, 等.高超声速三维内收缩式进气道/乘波前体一体化设计研究评述[J].力学进展, 2009, 39(5):513-525. doi: 10.3321/j.issn:1000-0992.2009.05.001

    You Y C, Liang D W, Guo R W, et al. Overview of the integration of three-dimensional inward turning hypersonic inlet and waverider forebody[J]. Advances in Mechanics, 2009, 39(5):513-525. doi: 10.3321/j.issn:1000-0992.2009.05.001
    [6] Nonweiler T R F. Aerodynamic problems of manned space vehicles[J]. Aeronautical Journal, 1959, 63(585):521-528. http://journals.cambridge.org/abstract_S0368393100071662
    [7] 赵桂林, 胡亮, 闻洁, 等.乘波构型和乘波飞行器研究综述[J].力学进展, 2003, 33(3):357-374. doi: 10.3321/j.issn:1000-0992.2003.03.007

    Zhao G L, Hu L, Wen J, et al. An overview of the research on waveriders and waverider-derived hypersonic vehicles[J]. Advances in Mechanics, 2003, 33(3):357-374. doi: 10.3321/j.issn:1000-0992.2003.03.007
    [8] Liu J, Ding F, Huang W, et al. Novel approach for designing a hypersonic gliding-cruising dual waverider vehicle[J]. Acta Astronautica, 2014, 102:81-88. doi: 10.1016/j.actaastro.2014.04.024
    [9] Ding F, Liu J, Shen C B, et al. Novel approach for design of a waverider vehicle generated from axisymmetric supersonic flows past a pointed von Karman ogive[J]. Aerospace Science and Technology, 2015, 42:297-308. doi: 10.1016/j.ast.2015.01.025
    [10] Ding F, Shen C B, Liu J, et al. Influence of surface pressure distribution of basic flow field on shape and performance of waverider[J]. Acta Astronautica, 2015, 108:62-78. doi: 10.1016/j.actaastro.2014.11.038
    [11] Ding F, Shen C B, Liu J, et al. Comparison between novel waverider generated from flow past a pointed von Karman ogive and conventional cone-derived waverider[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(14):2620-2633. doi: 10.1177/0954410015581404
    [12] Lewis M J. Application of waverider-based configurations to hypersonic vehicle design[R]. AIAA-1991-3304, 1991.
    [13] Lunan D A. Waverider, a revised chronology[R]. AIAA-2015-3529, 2015.
    [14] Stevens D R. Practical considerations in waverider applications[R]. AIAA-1992-4247, 1992.
    [15] Starkey R P, Lewis M J. Critical design issues for airbreathing hypersonic waverider missiles[J]. Journal of Spacecraft and Rockets, 2001, 38(4):510-519. doi: 10.2514/2.3734
    [16] 吴颖川, 贺元元, 余安远, 等.展向截断曲面乘波压缩进气道气动布局[J].航空动力学报, 2013, 28(7):1570-1575. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201307017

    Wu Y C, He Y Y, Yu A Y, et al. Aerodynamic layout of spanwise truncated curved waverider compression inlet[J]. Journal of Aerospace Power, 2013, 28(7):1570-1575. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201307017
    [17] 吴颖川, 姚磊, 杨大伟, 等.曲面乘波进气道非设计状态性能研究[J].实验流体力学, 2015, 29(4):26-31. http://www.syltlx.com/CN/abstract/abstract10855.shtml

    Wu Y C, Yao L, Yang D W, et al. Off-design performance of osculating curved cone inlet[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4):26-31. http://www.syltlx.com/CN/abstract/abstract10855.shtml
    [18] Starkey R P, Lewis M J. Simple analytical model for parametric studies of hypersonic waveriders[J]. Journal of Spacecraft and Rockets, 1999, 36(4):516-523. doi: 10.2514/3.27194
    [19] Starkey R P, Lewis M J. Aerodynamics of a box constrained waverider missile using multiple scramjets[R]. AIAA-1999-2378, 1999.
    [20] Starkey R P, Rankins F, Pines D. Coupled waverider/trajectory optimization for hypersonic cruise[R]. AIAA-2005-0530, 2005.
    [21] 李怡庆, 韩伟强, 尤延铖, 等.压力分布可控的高超声速进气道/前体一体化乘波设计[J].航空学报, 2016, 37(9):2711-2720. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201609009

    Li Y Q, Han W Q, You Y C, et al. Integration waverider design of hypersonic inlet and forebody with preassigned pressure distribution[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2711-2720. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201609009
    [22] Javaid K H, Serghides V C. Airframe-propulsion integration methodology for waverider-derived hypersonic cruise aircraft design concepts[J]. Journal of Spacecraft and Rockets, 2005, 42(4):663-671. doi: 10.2514/1.8782
    [23] Javaid K H, Serghides V C. Thrust-matching requirements for the conceptual design of hypersonic waverider vehicles[J]. Journal of Aircraft, 2005, 42(4):1055-1064. doi: 10.2514/1.8729
    [24] Jones J G, Moore K C, Pike J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J]. Ingenieur-Archiv, 1968, 37(1):56-72. doi: 10.1007/BF00532683
    [25] Lobbia M, Suzuki K. Numerical investigation of waverider-derived hypersonic transport configuratioins[R]. AIAA-2003-3804, 2003.
    [26] He X Z, Le J L, Wu Y C. Design of a curved cone derived waverider forebody[R]. AIAA-2009-7423, 2009.
    [27] 贺旭照, 倪鸿礼.密切曲面锥乘波体——设计方法与性能分析[J].力学学报, 2011, 43(6):1077-1082. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000651623

    He X Z, Ni H L. Osculating curved cone (OCC) waverider:design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6):1077-1082. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000651623
    [28] 贺旭照, 周正, 毛鹏飞, 等.密切曲面内锥乘波前体进气道设计和试验研究[J].实验流体力学, 2014, 28(3):39-44. http://www.syltlx.com/CN/abstract/abstract10732.shtml

    He X Z, Zhou Z, Mao P F, et al. Design and experimental study of osculating inward turning cone waverider/inlet (OICWI)[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3):39-44. http://www.syltlx.com/CN/abstract/abstract10732.shtml
    [29] He X Z, Le J L, Zhou Z, et al. Osculating inward turning cone waverider/inlet (OICWI) design methods and experimental study[R]. AIAA-2012-5810, 2012.
    [30] He X Z, Le J L, Zhou Z, et al. Progress in waverider inlet integration study[R]. AIAA-2015-3685, 2015.
    [31] He X Z, Zhou Z, Qin S, et al. Design and experimental study of a practical osculating inward cone waverider inlet[J]. Chinese Journal of Aeronautics, 2016, 29(6):1582-1590. doi: 10.1016/j.cja.2016.09.007
    [32] 周正, 贺旭照, 卫锋, 等.密切曲内锥乘波前体进气道低马赫数性能试验研究[J].推进技术, 2016, 37(8):1455-1460. http://d.old.wanfangdata.com.cn/Periodical/tjjs201608007

    Zhou Z, He X Z, Wei F, et al. Experimental studies of osculating inward turning cone waverider forebody inlet (OICWI) at low Mach number conditions[J]. Journal of Propulsion Technology, 2016, 37(8):1455-1460. http://d.old.wanfangdata.com.cn/Periodical/tjjs201608007
    [33] 贺旭照, 秦思, 周正, 等.一种乘波前体进气道的一体化设计及性能分析[J].航空动力学报, 2013, 28(6):1270-1276. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201306011

    He X Z, Qin S, Zhou Z, et al. Integrated design and perfor-mance analysis of waverider forebody and inlet[J]. Journal of Aerospace Power, 2013, 28(6):1270-1276. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201306011
    [34] Lewis M J, Takashima N. Engine/airframe integration for waverider cruise vehicles[R]. AIAA-1993-0507, 1993.
    [35] Takashima N, Lewis M J. Waverider configurations based on non-axisymmetric flow fields for engine-airframe integration[R]. AIAA-1994-0380, 1994.
    [36] Takashima N, Lewis M J. Wedge-cone waverider configuration for engine-airframe integration[J]. Journal of Aircraft, 1995, 32(5):1142-1144. doi: 10.2514/3.46848
    [37] 明承东.乘波前体/进气道气动布局设计方法研究[D].南京: 南京航空航天大学, 2013. https://max.book118.com/html/2015/0901/24471073.shtm

    Ming C D. Aerodyanmic layout design method of the waverider forebody/inlet configuration[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. https://max.book118.com/html/2015/0901/24471073.shtm
    [38] Sobieczky H, Dougherty F C, Jones K. Hypersonic waverider design from given shock waves[C]//Proc of the 1st International Hypersonic Waverider Symposium. 1990.
    [39] Takashima N, Lewis M J. Engine-airframe integration on osculating cone waverider-based vehicle designs[R]. AIAA-1996-2551, 1996.
    [40] O'Brien T F. RBCC engine-airframe integration on an osculating cone waverider vehicle[D]. College Park, MD: University of Maryland College Park, 2001.
    [41] O'Brien T F, Lewis M J. RBCC engine-airframe integration on an osculating cone waverider vehicle[R]. AIAA-2000-3823, 2000.
    [42] O'Brien T F, Lewis M J. Rocket-based combined-cycle engine integration on an osculating cone waverider vehicle[J]. Journal of Aircraft, 2001, 38(6):1117-1123. doi: 10.2514/2.2880
    [43] 吕侦军, 王江峰.多级压缩锥导/吻切锥乘波体设计与对比分析[J].北京航空航天大学学报, 2015, 41(11):2103-2109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201511017

    Lyu Z J, Wang J F. Design and comparative analysis of multistage compression cone-derived waverider and osculating cone waverider[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11):2103-2109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201511017
    [44] 吕侦军, 王江峰, 伍贻兆, 等.多级压缩锥导乘波体设计与分析[J].宇航学报, 2015, 36(5):518-523. doi: 10.3873/j.issn.1000-1328.2015.05.005

    Lyu Z J, Wang J F, Wu Y Z, et al. Design and analysis of multistage compression cone-derived waverider configuration[J]. Journal of Astronautics, 2015, 36(5):518-523. doi: 10.3873/j.issn.1000-1328.2015.05.005
    [45] 吕侦军, 王旭东, 季卫栋, 等.三级压缩锥导乘波体设计技术与实验分析[J].实验流体力学, 2015, 29(5):38-44. http://www.syltlx.com/CN/abstract/abstract10872.shtml

    Lyu Z J, Wang X D, Ji W D, et al. Design and experimental analysis of three-stage compression cone-derived waverider[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(5):38-44. http://www.syltlx.com/CN/abstract/abstract10872.shtml
    [46] Wang X D, Wang J F, Lyu Z J. A new integration method based on the coupling of mutistage osculating cones waverider and Busemann inlet for hypersonic airbreathing vehicles[J]. Acta Astronautica, 2016, 126:424-438. doi: 10.1016/j.actaastro.2016.06.022
    [47] Sobieczky H, Zores B, Wang Z, et al. High speed flow design using osculating axisymmetric flows[C]//Proc of the 3rd Pacific International Conference on Aerospace Science and Technology. 1997.
    [48] Sobieczky H, Zores B, Wang Z, et al. High speed flow design using osculating axisymmetric flows[J]. Chinese Journal of Aeronautics, 1999, 12(1):1-8. http://d.old.wanfangdata.com.cn/Periodical/hkxb-e199901001
    [49] Rodi P E. The osculating flowfield method of waverider geometry generation[R]. AIAA-2005-511, 2005.
    [50] Rodi P E. Engineering-based performance comparisons between osculating cone and osculating flowfield waveriders[R]. AIAA-2007-4344, 2007.
    [51] Rodi P E. Geometrical relationships for osculating cones and osculating flowfield waveriders[R]. AIAA-2011-1188, 2011.
    [52] Rodi P E. Preliminary ramjet/scramjet integration with vehicles using osculating flowfields waverider forebodies[R]. AIAA-2012-3223, 2012.
    [53] You Y C, Zhu C X, Guo J L. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody[R]. AIAA-2009-7421, 2009.
    [54] Li Y Q, An P, Pan C J, et al. Integration methodology for waverider-derived hypersonic inlet and vehicle forebody[R]. AIAA-2014-3229, 2014.
    [55] 南向军, 张堃元, 金志光.乘波前体两侧高超声速内收缩进气道一体化设计[J].航空学报, 2012, 33(8):1417-1426. http://d.old.wanfangdata.com.cn/Periodical/hkxb201208008

    Nan X J, Zhang K Y, Jin Z G. Integrated design of waverider forebody and lateral hypersonic inward turning inlets[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8):1417-1426. http://d.old.wanfangdata.com.cn/Periodical/hkxb201208008
    [56] Walker S H, Rodgers F. Falcon hypersonic technology overview[R]. AIAA-2005-3253, 2005.
    [57] Elvin J D. Integrated inward turning inlets and nozzles for hypersonic air vehicle: USA, 07866599. 2011-01-11.
    [58] 崔凯, 胡守超, 李广利, 等.双旁侧进气高超声速飞机概念设计与评估[J].中国科学:技术科学, 2013, 43(10):1085-1093. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201211007271.htm

    Cui K, Hu S C, Li G L, et al. Conceptural design and aerodynamic evaluation of hypersonic airplane with double flanking air inlets[J]. Science China:Technological Sciences, 2013, 43(10):1085-1093. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201211007271.htm
    [59] Cui K, Hu S C, Li G L, et al. Conceptual design and aerodynamic evaluation of hypersonic airplane with double flanking air inlets[J]. Science China:Technological Sciences, 2013, 56(8):1980-1988. doi: 10.1007/s11431-013-5288-0
    [60] O'Neill M K L, Lewis M J. Design tradeoffs on scramjet engine integrated hypersonic waverider vehicles[J]. Journal of Aircraft, 1993, 30(6):943-952. doi: 10.2514/3.46438
    [61] Tarpley C. The optimization of engine-integrated hypersonic waveriders with steady state flight and static margin constraints[D]. College Park, MD: University of Maryland College Park, 1995.
    [62] Tarpley C, Lewis M J. Optimization of an engine-integrated waverider with steady state flight constraints[R]. AIAA-1995-0848, 1995.
    [63] Smith T R, Bowcutt K G. Integrated hypersonic inlet design: USA, 08256706.2012-09-04.
    [64] Ding F, Liu J, Shen C B, et al. Novel inlet-airframe integration methodology for hypersonic waverider vehicles[J]. Acta Astronautica, 2015, 111:178-197. doi: 10.1016/j.actaastro.2015.02.016
    [65] Tian C, Li N, Gong G H, et al. A parameterized geometry design method for inward turning inlet compatible waverider[J]. Chinese Journal of Aeronautics, 2013, 26(5):1135-1146. doi: 10.1016/j.cja.2013.07.003
    [66] Walker S, Tang M, Morris S, et al. Falcon HTV-3X-A reusable hypersonic test bed[R]. AIAA-2008-2544, 2008.
  • 加载中
图(25)
计量
  • 文章访问数:  691
  • HTML全文浏览量:  240
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-04
  • 修回日期:  2018-11-01
  • 刊出日期:  2018-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日