留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲爆震发动机反压传播规律数值研究

李清安 王可 孙田雨 范明华 范玮

李清安, 王可, 孙田雨, 等. 脉冲爆震发动机反压传播规律数值研究[J]. 实验流体力学, 2019, 33(1): 103-110. doi: 10.11729/syltlx20180093
引用本文: 李清安, 王可, 孙田雨, 等. 脉冲爆震发动机反压传播规律数值研究[J]. 实验流体力学, 2019, 33(1): 103-110. doi: 10.11729/syltlx20180093
Li Qing'an, Wang Ke, Sun Tianyu, et al. Numerical study on propagation characteristics of back-pressure in a pulse detonation engine[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 103-110. doi: 10.11729/syltlx20180093
Citation: Li Qing'an, Wang Ke, Sun Tianyu, et al. Numerical study on propagation characteristics of back-pressure in a pulse detonation engine[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 103-110. doi: 10.11729/syltlx20180093

脉冲爆震发动机反压传播规律数值研究

doi: 10.11729/syltlx20180093
基金项目: 

国家自然科学基金项目 91441201

国家自然科学基金项目 91641101

国家自然科学基金项目 51876179

详细信息
    作者简介:

    李清安(1992-), 男, 四川都江堰人, 博士研究生。研究方向:爆震燃烧与流动。通信地址:陕西省西安市长安区东大镇东祥路1号西北工业大学长安校区动力与能源学院(710129)。E-mail:mcraecolin@163.com

    通讯作者:

    王可, E-mail: wangk@nwpu.edu.cn

  • 中图分类号: V231.2+2

Numerical study on propagation characteristics of back-pressure in a pulse detonation engine

  • 摘要: 为研究吸气式脉冲爆震发动机反压的传播规律,以一种特殊构型的隔离段与长径比为20的爆震室构成的发动机流道作为基准模型,并选取4种构型作为对照组,进行了单次爆震的数值模拟。研究了反压的反传速度、峰值及其衰减率,计算了基准模型的总压恢复系数。结果表明:设计的隔离段能有效降低反压的反传速度和峰值;爆震室的长径比越大,所含的燃料和氧化剂越多,反压越难以抑制;在反压向上游传播的初期,压力峰值的衰减率主要受隔离段结构的影响,之后则主要取决于反传距离;当来流压力一定时,长径比越小的爆震室,排气过程越迅速,反压下降得越快;在海平面大气条件下,当来流马赫数为0.15~0.80时,所设计的隔离段并未造成大的总压损失。
  • 图  1  物理模型示意图

    Figure  1.  Schematic of physical models

    图  2  实验[27](上)与数值纹影(下)的对比

    Figure  2.  Comparison between experimental[27] (upper) and numerical schlierens(lower)

    图  3  计算域、网格及边界条件

    Figure  3.  Computational domain, grids and boundary conditions

    图  4  压力等值线图(上)、H2O的质量百分数云图及流线图(下)

    Figure  4.  Pressure isolines(upper), mass fraction contours of H2O and streamline diagram(lower)

    图  5  基准模型(A-20)各时刻中轴线上的静压分布

    Figure  5.  Static pressure history along the central axis of the base model (A-20)

    图  6  反压波头峰值与隔离段压力峰值示意图

    Figure  6.  Schematic diagram of the head back-pressure and the isolator pressure peak

    图  7  按A-20归一化的反压波头峰值

    Figure  7.  Head back-pressure peaks normalized by A-20

    图  8  按A-20归一化的隔离段压力峰值

    Figure  8.  Isolator pressure peaks normalized by A-20

    图  9  反压波头峰值沿各级刺型肋的衰减率

    Figure  9.  Decay rate of head back-pressure peaks along various stages of thorns

    图  10  隔离段压力峰值沿各级刺型肋的衰减率

    Figure  10.  Decay rate of isolator pressure peaks along various stages of thorns

    图  11  隔离段与爆震室中的典型压力分布

    Figure  11.  Typical pressure distribution in an isolator and a detonation combustor

    图  12  海平面大气条件下隔离段总压恢复系数随来流马赫数的变化

    Figure  12.  Total pressure recovery coefficient of the isolator versus Mach number of incoming flow under sea level conditions

    表  1  模型设置

    Table  1.   Model configurations

    Case ID Isolator config. L/D of DC Notes
    A-10 Thorns + Vents 10
    A-20 Thorns + Vents 20 Base model
    A-40 Thorns + Vents 40
    B-20 Thorns 20
    C-20 Vents 20
    下载: 导出CSV

    表  2  反压抵达各级刺型肋的时刻(单位: μs)

    Table  2.   Arrival time of back-pressure at different stages of the thorns(unit: μs)

    Case ID Stage of thorns
    0 1 2 3 4 5 6 7
    A-10 5 45 135 255 400 550 705 920
    A-20 5 35 100 185 295 405 525 650
    A-40 5 35 90 165 260 355 465 580
    B-20 5 35 95 175 285 390 505 615
    C-20 5 35 95 150 215 285 360 440
    下载: 导出CSV
  • [1] Zangiev A E, Ivanov V S, Frolov S M. Thrust characteristics of an airbreathing pulse detonation engine in flight at Mach numbers of 0.4 to 5.0[J]. Russian Journal of Physical Chemistry B, 2016, 10(2):272-283. doi: 10.1134/S1990793116020135
    [2] Xiong C, Yan C J, Qiu H. Analysis of an air-breathing pulsed detonation engine with bypass and ejector[J]. International Journal of Turbo and Jet Engines, 2008, 25(2):129-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1515/TJJ.2008.25.2.129
    [3] European commission. Aeronautics and air transport research-7th framework programme 2007-2013. Project synopses-volume 1-calls 2007& 2008[R]. doi: 10.2777/83373.
    [4] Wang K, Fan W, Zhu X D, et al. Experimental studies on rotary valves for single-tube pulse detonation rocket engines[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 228(2):262-270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2616af2250df0bad68fa1201f01891fe
    [5] 彭畅新.脉冲爆震外涵加力燃烧室关键技术研究[D].西安: 西北工业大学, 2013.

    Peng C X. Investigation on key technologies of pulse detonation combustor as bypass burner[D]. Xi'an: Northwestern Polytechnical University, 2013.
    [6] 范玮, 陈文娟, 严传俊.一种吸气式脉冲爆震发动机防反流机构: 中国, CN201020109153.7[P]. 2010-10-27.

    Fan W, Cheng W J, Yan C J. Device for back-flow prevention of air-breathing pulse detonation engine: China, CN201020109153.7[P]. 2010-10-27.
    [7] Matsuoka K, Morozumi T, Takagi S, et al. Flight validation of a rotary-valved four-cylinder pulse detonation rocket[J]. Journal of Propulsion and Power, 2015:1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bbc5033bb30fdd8d9ee2b389f6e86115
    [8] 温玉芬.吸气式脉冲爆震发动机进气道的流动特性研究[D].南京: 南京航空航天大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10287-1012041309.htm

    Wen Y F. Research on the flow characteristics of the inlet for air-breathing pulse detonation engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10287-1012041309.htm
    [9] 何小民, 王家骅.气动阀式两相脉冲爆震发动机研究[J].航空学报, 2004, 25(6):529-533. doi: 10.3321/j.issn:1000-6893.2004.06.001

    He X M, Wang J H. Investigation on the aerovalve two phase pulse detonation engine[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(6):529-533. doi: 10.3321/j.issn:1000-6893.2004.06.001
    [10] 李建中, 王家骅, 范育新, 等.煤油气动阀式脉冲爆震发动机爆震波压力特性试验[J].推进技术, 2005, 26(5):443-447. doi: 10.3321/j.issn:1001-4055.2005.05.015

    Li J Z, Wang J H, Fan Y X, et al. Detonation pressure properties of kerosene aero-valve pulse detonation engine[J]. Journal of Propulsion Technology, 2005, 26(5):443-447. doi: 10.3321/j.issn:1001-4055.2005.05.015
    [11] 郑殿峰, 杨义勇, 王家骅.吸气式脉冲爆震发动机钝体气动阀的设计与实验研究[J].北京大学学报:自然科学版, 2012, 48(3):347-353. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201203002

    Zheng D F, Yang Y Y, Wang J H. Design and experimental investigation of blunt aero-valve for air-breathing pulse detonation engine[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48(3):347-353. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201203002
    [12] Wang K, Fan W, Lu W, et al. Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process[J]. Energy, 2014, 71:605-614. doi: 10.1016/j.energy.2014.05.002
    [13] Lu W, Fan W, Wang K, et al. Operation of a liquid-fueled and valveless pulse detonation rocket engine at high frequency[J]. Proceedings of the Combustion Institute, 2016, 36(2):2657-2664. http://cn.bing.com/academic/profile?id=47cbf4afaa7adcb6e6cdfc4f5837ff3a&encoded=0&v=paper_preview&mkt=zh-cn
    [14] Brophy C M, Sinibaldi J O, Ma L, et al. Effects of non-uniform mixture distributions on pulse detonation engine performance[R]. AIAA-2005-1304, 2005.
    [15] Qiu H, Xiong C, Yan C J, et al. Effect of aerodynamic valve on backflow in pulsed detonation tube[J]. Aerospace Science and Technology, 2013, 25(1):1-15. doi: 10.1016/j.ast.2011.12.003
    [16] 卢杰.脉冲爆震涡轮发动机关键技术研究[D].西安: 西北工业大学, 2016.

    Lu J. Investigation on key technologies of pulse detonation turbine engine[D]. Xi'an: Northwestern Polytechnical University, 2016.
    [17] Sha S, Chen Z, Jiang X. Influences of obstacle geometries on shock wave attenuation[J]. Shock Waves, 2014, 24(6):573-582. doi: 10.1007/s00193-014-0520-9
    [18] Wang Z W, Wang Y Q, Peng C X, et al. Experimental study of pressure back-propagation in a valveless air-breathing pulse detonation engine[J]. Applied Thermal Engineering, 2017, 110:62-69. doi: 10.1016/j.applthermaleng.2016.08.144
    [19] Lu F K, Umapathy N K, Thirumangalath S C. Multi-port filling of pulsed detonation engines[R]. AIAA-2017-2119, 2017.
    [20] 李舒欣, 范玮, 王永佳, 等.流体障碍物对爆震管中初始火焰加速作用的数值研究[J].推进技术, 2017, 38(8):1893-1899. http://d.old.wanfangdata.com.cn/Periodical/tjjs201708028

    Li S X, Fan W, Wang Y J, et al. Numerical simulation of effects of fluidic obstacles on initial flame speed acceleration in a detonation tube[J]. Journal of Propulsion Technology, 2017, 38(8):1893-1899. http://d.old.wanfangdata.com.cn/Periodical/tjjs201708028
    [21] Wang Y J, Fan W, Li H B, et al. Numerical simulations of flame propagation and DDT in obstructed detonation tubes filled with fluidic obstacles[R]. AIAA-2017-2382, 2017.
    [22] Zhang Q B, Fan W, Wang K, et al. Numerical investigation on the performance of the pulse detonation engine with injected flows[R]. AIAA-2017-2242, 2017.
    [23] Peace J T, Lu Frank K. Numerical study of pulse detonation engine nozzle and exhaust flow phenomena[R]. AIAA-2015-4189, 2015.
    [24] Aungier R H. A fast, accurate real gas equation of state for fluid dynamic analysis applications[J]. Journal of Fluids Engineering, 1995, 117(2):277-281. doi: 10.1115/1.2817141
    [25] Kaneshige M, Shepherd J E. Detonation database[R]. Explosion Dynamics Laboratory Report FM97-8, 1997.
    [26] 王丁喜.脉冲爆震发动机进气道内流场和爆震燃烧的数值研究[D].西安: 西北工业大学, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10699-2005064149.htm

    Wang D X. Numerical investigation on internal flow of inlet and detonation of pulse detonation engine[D]. Xi'an: Northwestern Polytechnical University, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10699-2005064149.htm
    [27] Berger S, Sadot O, Ben-Dor G. Experimental investigation on the shock-wave load attenuation by geometrical means[J]. Shock Waves, 2010, 20(1):29-40. doi: 10.1007/s00193-009-0237-3
    [28] Gamezo V N, Oran E S. Unidirectional propagation of gas detonations in channels with sawtooth walls[R]. NRL/MR/6404-10-9255, 2010.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  251
  • HTML全文浏览量:  144
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-11
  • 修回日期:  2018-09-18
  • 刊出日期:  2019-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日