留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尖前缘驻点热流精细化测量研究

张杨 贾广森 沙心国 陈星

张杨, 贾广森, 沙心国, 等. 尖前缘驻点热流精细化测量研究[J]. 实验流体力学, 2019, 33(6): 59-64. doi: 10.11729/syltlx20180112
引用本文: 张杨, 贾广森, 沙心国, 等. 尖前缘驻点热流精细化测量研究[J]. 实验流体力学, 2019, 33(6): 59-64. doi: 10.11729/syltlx20180112
Zhang Yang, Jia Guangsen, Sha Xinguo, et al. Precise stagnation point heat flux measurement technique of sharp leading edges[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 59-64. doi: 10.11729/syltlx20180112
Citation: Zhang Yang, Jia Guangsen, Sha Xinguo, et al. Precise stagnation point heat flux measurement technique of sharp leading edges[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 59-64. doi: 10.11729/syltlx20180112

尖前缘驻点热流精细化测量研究

doi: 10.11729/syltlx20180112
基金项目: 

国家自然科学基金面上项目 11872349,91752111

详细信息
    作者简介:

    张杨(1978-), 女, 湖南醴陵人, 高级工程师, 硕士研究生。研究方向:气动热环境研究。通信地址:北京9200信箱76分箱9号。E-mail:zhangy1zy@sina.com

    通讯作者:

    沙心国, E-mail: shaxg@163.com

  • 中图分类号: V211.71

Precise stagnation point heat flux measurement technique of sharp leading edges

  • 摘要: 为提高升阻比特性,现代高超声速飞行器常采用尖前缘结构,这对热防护系统提出了很大挑战。尖前缘结构由于表面曲率较大,常规的点测量和面测量试验技术均难以对驻点热流进行准确测量。针对尖前缘驻点热流测量难题,制作了专用的整体式薄膜电阻温度计,建立了驻点热流参数辨识方法,并以不同前缘半径(R=1.0、2.0和5.0 mm)的斜劈模型为研究对象,在FD-20高超声速脉冲风洞中开展了试验验证,来流马赫数分别为4、5、6和8,试验结果表明:整体式传感器稳定性好、灵敏度高、耐冲刷性强,其参数辨识方法精度高,试验获得的前缘驻点热流与理论值误差小于15%。
  • 图  1  尖前缘驻点热流测量传感器示意图

    Figure  1.  Schematic of the integral heat flux sensors

    图  2  尖前缘驻点热流测量传感器实物图

    Figure  2.  Photograph of the integral heat flux sensors

    图  3  热物性随温度的变化规律

    Figure  3.  Substrate thermal property variation with temperature

    图  4  热物性参数对热流测量的影响

    Figure  4.  Heat flux deviation with temperature rise

    图  5  不同来流条件下表面温升(前缘半径R=1 mm)

    Figure  5.  Computed temperature rise under various flow conditions

    图  6  前缘半径对多维导热的影响

    Figure  6.  Computed temperature versus time for different sharp leading edge radiuses

    图  7  斜劈模型

    Figure  7.  Wedge model

    图  8  FD-20脉冲风洞

    Figure  8.  FD-20 impulse wind tunnel

    表  1  不同来流条件测量误差随计算时间变化情况

    Table  1.   Measured heat flux error deviation with time under various flow conditions

    Q/(kW·m-2) Time/ms Q1D/Q3D*
    100 5 0.976
    10 0.942
    20 0.876
    30 0.825
    500 5 0.976
    10 0.942
    20 0.876
    30 0.825
    1000 5 0.976
    10 0.942
    20 0.876
    30 0.825
    *: Q1D采用一维热传导计算值, Q3D采用三维热传导计算值。
    下载: 导出CSV

    表  2  试验来流参数

    Table  2.   Test conditions

    Flow condition Ma po/MPa To/K Re/m-1 Piston
    (1) 4.02 2.00 624.7 2.92×107 NO
    (2) 4.92 3.08 631.6 2.81×107 NO
    (3) 5.92 6.56 909.7 2.21×107 YES
    (4) 7.97 19.36 960.0 2.83×107 YES
    下载: 导出CSV

    表  3  不同来流条件下尖前缘驻点热流测量结果及误差

    Table  3.   Measured heat flux and errors

    Flowcondition R=1 mm R=2 mm R=5 mm
    (1) Qt/(kW·m-2) 1154.5 816.3 516.3
    Qexp/(kW·m-2) 983.7 794.9 553.8
    Error -14.79% -2.63% +7.26%
    (2) Qt/(kW·m-2) 721.0
    Qexp/(kW·m-2) 676.4
    Error -6.19%
    (3) Qt/(kW m-2) 1921.2 1358.5 859.2
    Qexp/(kW·m-2) 1097.0 956.4 676.2
    Error -42.9% -29.6% -21.3%
    (4) Qt/(kW·m-2) 1331.8
    Qexp/(kW·m-2) 952.4
    Error -28.49%
    Error=(Qexp-Qt)/Qt×100%, Qt为理论值, Qexp为试验测量值, Qexp.m为修正后的试验测量值
    下载: 导出CSV

    表  4  修正前后测量结果对比

    Table  4.   Comparison of measured and modified heat flux

    Flow condition R=1 mm R=2 mm R=5 mm
    (3) Qt/(kW·m-2) 1921.2 1358.5 859.2
    Qexp/(kW·m-2) 1097.0(-42.9%) 956.4(-29.6%) 676.2(-21.3%)
    Qexp.m/(kW·m-2) 1808.7(-5.86%) 1339.2(-1.42%) 817.6(-4.84%)
    (4) Qt/(kW·m-2) 1331.8
    Qexp/(kW·m-2) 952.4(-28.49%)
    Qexp.m/(kW·m-2) 1322.93(-0.67%)
    下载: 导出CSV
  • [1] 姜贵庆, 张学军, 王淑华, 等.飞行器尖化前缘的热结构特性[J].宇航材料工艺, 2007, 37(4): 8-11. doi: 10.3969/j.issn.1007-2330.2007.04.003

    Jiang G Q, Zhang X J, Wang S H, et al. Thermal structure properties of sharp leading edges for spacecraft[J]. Aerospace Materials and Technology, 2007, 37(4): 8-11. doi: 10.3969/j.issn.1007-2330.2007.04.003
    [2] Salute J, Bull J, Rasky D, et al. SHARP-B2: flight test objectives, project implementation and initial results[C]//Proc of the 2nd Annual Conference on Composites, Materials and Structures. 2001.
    [3] 曾磊, 石友安, 孔荣宗, 等.薄膜电阻温度计原理性误差分析及数据处理方法研究[J].实验流体力学, 2011, 25(1): 79-83. doi: 10.3969/j.issn.1672-9897.2011.01.016

    Zeng L, Shi Y A, Kong R Z, et al. Study on principle error analysis and data processing method of thin film resistance thermometer[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(1): 79-83. doi: 10.3969/j.issn.1672-9897.2011.01.016
    [4] Chadwick K M.Stagnation heat transfer measurement techni-ques in hypersonic shock tunnel flows over spherical segments[R]. AIAA-97-2493, 1997.
    [5] Gai S, Baird J, Lyons P, et al. Stagnation point heat transfer in hypersonic high enthalpy flow[R]. AIAA-85-973, 1985.
    [6] Kidd C T.High heat flux measurements and experimental calibrations/characteriszations[C]//Proc of the 1992 NASA Langley Measurement Technology Conference: Measurement Technology for Aerospace Applications in High-Temperature Environments. 1992.
    [7] Juliano T J, Schneider S P. Instability and transition on the HIFiRE-5 in a Mach-6 quiet tunnel[R]. AIAA-2010-5004, 2010.
    [8] Sweeney C J, Chynoweth B C, Edelman J B, et al. Instability and transition experiments in the Boeing/AFOSR Mach 6 quiet tunnel[R]. AIAA-2016-0355, 2016.
    [9] 毕志献, 韩曙光, 伍超华, 等.磷光热图测热技术研究[J].实验流体力学, 2013, 27(3): 87-92. doi: 10.3969/j.issn.1672-9897.2013.03.017

    Bi Z X, Han S G, Wu C H, et al. Phosphor thermography study in gun tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3): 87-92. doi: 10.3969/j.issn.1672-9897.2013.03.017
    [10] Wang Q, Olivier H, Einhoff J, et al. Influence of test model material on the accuracy of transient heat transfer measurements in impulse facilities[J]. Experimental Thermal and Fluid Science, 2019, 104: 59-66. doi: 10.1016/j.expthermflusci.2019.02.013
    [11] Holden M S, Wadhams T P. A database of aerothermal measure-ments in hypersonic flow in 'building block' experi-ments for CFD validation[R]. AIAA-2003-1137, 2003.
    [12] 张仕忠, 陈宏, 董志成, 等.高焓激波管驻点热流率测量[C]//第十四届全国激波与激波管学术会议论文集. 2010.

    Zhang S Z, Chen H, Dong Z C, et al. Heat-flux measurement at stagnation point in high-enthalpy shock tubes[C]//Proc of the 14th Chinese National Symposium on Shock Waves. 2010.
    [13] 秦峰, 何川, 曾磊, 等.驻点热流测量试验技术研究[J].西南交通大学学报. 2013, 48(6): 1072-1077. doi: 10.3969/j.issn.0258-2724.2013.06.016

    Qin F, He C, Zeng L, et al. Experimental research of heat-transfer measurements on stagnation points[J]. Journal of Southwest Tiaotong University. 2013, 48(6): 1072-1077. doi: 10.3969/j.issn.0258-2724.2013.06.016
    [14] 陈星.尖化前缘热环境实验技术研究[D].长沙: 国防科学技术大学, 2011.

    Chen X. Experimental technique study of heat transfer measurement on sharp leading edges[D]. Changsha: National University of Defense Technology, 2011.
    [15] 陈星, 宫建, 师军, 等.尖前缘驻点热流测量试验研究[C]//第十五届全国激波与激波管学术会议论文集. 2012.

    Chen X, Gong J, Shi J, et al. Experimental study of stagnation-point heat transfer measurement on sharp leading edges[C]//Proc of the 15th Chinese National Symposium on Shock Waves. 2012.
    [16] 吴松, 舒勇华, 李进平, 等.一种具有时空高分辨率的整体式热流传感器[J].科学通报, 2014, 59(25): 2484-2489. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201425005

    Wu S, Shu Y H, Li J P, et al. An integral heat flux sensor with high spatial and temporal resolutions[J]. Chinese Science Bulletin, 2014, 59(25): 2484-2489. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201425005
    [17] Lees L. Laminar heat transfer over blunt-nosed bodies at hypersonic flight speed[J]. Jet Propulsion, 1956, 26(4): 259-269. doi: 10.2514/8.6977
    [18] Cook W J, Felderman E J. Reduction of data from thin-film heat-transfer gages: a concise numerical technique[J]. AIAA Journal, 1996, 4(3): 561-562. http://cn.bing.com/academic/profile?id=2dc51f228f3971e6892a29b23c6e35c4&encoded=0&v=paper_preview&mkt=zh-cn
    [19] Dowding K, Beck J, Ulbrich A, et al. Estimation of thermal properties and surface heat flux in a carbon-carbon composite[J]. Journal of Thermophysics and Heat Transfer, 1995, 9(2): 345-351. doi: 10.2514/3.666
    [20] Hartunian R A, Varwig R L. On thin-film heat-transfer measurements in shock tubes and shock tunnels[J]. Physics of Fluids, 1962, 5(2): 169-174. doi: 10.1063/1.1706592
    [21] Fay J A, Riddell F R. Theory ofstagnation point heat transfer in dissociated air[J]. Journal of the Aeronautical Sciences, 1958, 25(2):73-85. https://www.researchgate.net/publication/312577255_Theory_of_Stagnation_Point_Heat_Transfer_in_Dissociated_Air
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  92
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-25
  • 修回日期:  2018-12-25
  • 刊出日期:  2019-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日