留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电邦德数影响下无水乙醇的荷电微射流不稳定性

霍元平 王军锋 左子文 刘海龙

霍元平, 王军锋, 左子文, 等. 电邦德数影响下无水乙醇的荷电微射流不稳定性[J]. 实验流体力学, 2019, 33(6): 15-21. doi: 10.11729/syltlx20180113
引用本文: 霍元平, 王军锋, 左子文, 等. 电邦德数影响下无水乙醇的荷电微射流不稳定性[J]. 实验流体力学, 2019, 33(6): 15-21. doi: 10.11729/syltlx20180113
Huo Yuanping, Wang Junfeng, Zuo Ziwen, et al. Electrical Bond number effects on the instability of charged ethanol micro-jet in electrosprays[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 15-21. doi: 10.11729/syltlx20180113
Citation: Huo Yuanping, Wang Junfeng, Zuo Ziwen, et al. Electrical Bond number effects on the instability of charged ethanol micro-jet in electrosprays[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 15-21. doi: 10.11729/syltlx20180113

电邦德数影响下无水乙醇的荷电微射流不稳定性

doi: 10.11729/syltlx20180113
基金项目: 

国家自然科学基金项目 51706089

江苏省自然科学基金项目 BK20160517

中国博士后科学基金资助项目 016M601734

详细信息
    作者简介:

    霍元平(1987-), 男, 安徽阜南人, 博士, 讲师。研究方向:荷电两相及多相流动力学、荷电多相流传热传质和荷电微射流技术的多领域应用。通信地址:江苏省镇江市学府路301号(212013)。E-mail:huoyuanping@ujs.edu.cn

    通讯作者:

    霍元平, E-mail:huoyuanping@ujs.edu.cn

  • 中图分类号: TK018

Electrical Bond number effects on the instability of charged ethanol micro-jet in electrosprays

  • 摘要: 基于高速摄像及小尺度PIV技术对无水乙醇荷电微射流雾化模式的演变及射流不稳定性进行了实验研究。精确捕捉了无水乙醇荷电微射流的显微演变过程,探讨了电邦德数影响下不同雾化模式的射流不稳定性演变特征及其对微射流雾化特性的影响规律。实验结果表明:射流的非轴对称性径向扰动贯穿于整个射流雾化模式区间;随着电邦德数不断增大,射流偏离度呈先增大后减小的趋势,而其不确定性的脉动范围在锥射流模式下不断增大,过渡到多股射流模式后,脉动范围逐渐减小至零,而后再逐渐增大;锥射流模式下,射流核心区及速度方向均偏离轴心,射流速度较纺锤模式明显回落;多股射流模式下,射流核心区速度明显回升,但不同电邦德数下多股射流之间的速度分布差异较大;多数情况下,射流边界处的流线较为紊乱,缺乏对称性,但在电邦德数为13.30~13.60的极小区间内保持稳定的多股射流稳定雾化形态,射流核心区速度达到峰值。
  • 图  1  无水乙醇荷电雾化的可视化实验装置

    Figure  1.  Apparatus of charged ethanol atomization

    图  2  不同BoE下无水乙醇荷电微射流雾化形态

    Figure  2.  Morphology of the micro-jet at different Bond numbers

    图  3  不同BoE下无水乙醇微射流偏离轴心的角度变化

    Figure  3.  Deviation of the micro-jet at different Bond numbers

    图  4  微射流雾化区域的选择

    Figure  4.  The choice of micro-jet area

    图  5  不同BoE下的微射流雾化PIV图像、速度矢量图及流线图

    Figure  5.  PIV images, velocity vector and flow diagrams of the micro-jet at different Bond numbers

  • [1] Brown N A, Zhu Y Q, German G K, et al. Electrospray deposit structure of nanoparticle suspensions[J]. Journal of Electrostatics, 2017, 90: 67-73. doi: 10.1016/j.elstat.2017.09.004
    [2] 贾卫东, 李成, 薛飞, 等.背负式静电喷雾器设计与试验[J].高电压技术, 2012, 38(5): 1078-1083. http://d.old.wanfangdata.com.cn/Periodical/gdyjs201205010

    Jia W D, Li C, Xue F, et al. Design and experiment of knapsack electrostatic sprayer[J]. High Voltage Engineering, 2012, 38(5): 1078-1083. http://d.old.wanfangdata.com.cn/Periodical/gdyjs201205010
    [3] 郑捷庆, 张军, 钟晓龙.乳化柴油静电雾化的试验研究[J].实验流体力学, 2012, 26(6): 44-47. doi: 10.3969/j.issn.1672-9897.2012.06.010

    Zheng J Q, Zhang J, Zhong X L. Experimental investigation on electrostatic atomization characteristics of emulsified diesel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6): 44-47. doi: 10.3969/j.issn.1672-9897.2012.06.010
    [4] Roncallo S, Painter J D, Ritchie S A, et al. Evaluation of different deposition conditions on thin films deposited by electrostatic spray deposition using a uniformity test[J]. Thin Solid Films, 2010, 518(17): 4821-4827. doi: 10.1016/j.tsf.2010.01.061
    [5] Bock N, Dargaville T R, Woodruff M A. Electrospraying of polymers with therapeutic molecules: State of the art[J]. Progress in Polymer Science, 2012, 37(11): 1510-1551. doi: 10.1016/j.progpolymsci.2012.03.002
    [6] Varea A, Monereo O, Xuriguera E, et al. Electrospray as a suitable technique for manufacturing carbon-based devices[J]. Journal of Physics D: Applied Physics, 2017, 50(31): 315301. doi: 10.1088/1361-6463/aa798b
    [7] Luo C J, Loh S, Stride E, et al. Electrospraying and electrospinning of chocolate suspensions[J]. Food and Biopro-cess Technology, 2012, 5(6): 2285-2300. doi: 10.1007/s11947-011-0534-6
    [8] Basset A B. Waves and jets in a viscous liquid[J]. American Journal of Mathematics, 1894, 16(1): 93-110. doi: 10.2307/2369834
    [9] Zeleny J. On the conditions of instability of liquid drops, with applications to the electrical discharge from liquid point[J]. Physical Review, 1914, 69(3): 71-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/154596830101500402
    [10] Taylor G I, McEwan A D. The stability of a horizontal fluid interface in a vertical electric field[J]. Journal of Fluid Mechanics, 1965, 22(1): 1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112065000538
    [11] Taylor G. Electrically driven jets[J]. Proceedings of the Royal Society of London, 1969, 313(1515): 453-475. doi: 10.1098/rspa.1969.0205
    [12] Turnbull R J. Finite conductivity effects on electrostatically sprayed liquid jets[J]. IEEE Transactions on industry applications IA, 1996, 32(4): 837-843. doi: 10.1109/28.511689
    [13] González H, García F J, Castellanos A. Stability analysis of conducting jets under ac radial electric fields for arbitrary viscosity[J]. Physics of Fluids, 2003, 15(2): 395-407. doi: 10.1063/1.1529659
    [14] Lòpez-Herrera J M, Riesco-Chuaca P, Gañán-Calvo A M. Linear stability analysis of axisymmetric perturbations in imperfectly conducting liquid jets[J]. Physics of Fluids, 2005, 17(3): 034106. doi: 10.1063/1.1863285
    [15] Li F, Yin X Y, Yin X Z. Instability analysis of an inner-driving coaxial jet inside a coaxial electrode for the non-equipotential case[J]. Journal of Electrostatics, 2008, 66(1-2): 58-70. doi: 10.1016/j.elstat.2007.08.001
    [16] 王晓英, 王军锋.荷电黏性液体射流线性不稳定性分析[J].排灌机械工程学报, 2012, 30(2): 225-230. doi: 10.3969/j.issn.1674-8530.2012.02.020

    Wang X Y, Wang J F. Linear stability analysis for charged viscid liquid jets[J]. Journal of Drainage and Irrigation Machi-nery Engineering, 2012, 30(2): 225-230. doi: 10.3969/j.issn.1674-8530.2012.02.020
    [17] 甘云华, 张夏, 罗智斌.微尺度锥射流雾化模拟分析[J].高电压技术, 2015, 41(12): 4000-4007. http://d.old.wanfangdata.com.cn/Periodical/gdyjs201512018

    Gan Y H, Zhang X, Luo Z B. Numerical analysis on micro-scale cone-jet spraying[J]. High Voltage Engineering, 2015, 41(12): 4000-4007. http://d.old.wanfangdata.com.cn/Periodical/gdyjs201512018
    [18] Reznik S N, Yarin A L, Theron A, et al. Transient and steady shapes of droplets attached to a surface in a strong electric field[J]. Journal of Fluid Mechanics, 2004, 516: 349-377. doi: 10.1017/S0022112004000679
    [19] Coelho R, Debeau J. Properties of the tip-plane configuration[J]. Journal of Physics D: Applied Physics, 1971, 4(9): 1266. doi: 10.1088/0022-3727/4/9/305
    [20] Jaworek A, Machowski W, Krupa A, et al. Viscosity effect on EHD spraying using AC superimposed on DC electric field[C]//Proc of the 2000 IEEE Industry Applications Conference. 2000. https://www.researchgate.net/publication/3873043_Viscosity_effect_on_EHD_spraying_using_AC_superimposed_on_DC_electric_field
    [21] Guildenbecher D R, López-Rivera C, Sojka P E. Secondary atomization[J]. Experiments in Fluids, 2009, 46(3): 371-402. doi: 10.1007/s00348-008-0593-2
    [22] 霍元平, 王军锋, 毛文龙, 等.荷电液滴脉动变形特性的实验研究[J].工程热物理学报, 2013, 34(1): 99-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201301024

    Huo Y P, Wang J F, Mao W L, et al. Experimental study on oscillation and deformation of charged droplet[J]. Journal of Engineering Thermophysics, 2013, 34(1): 99-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201301024
    [23] 汪朝晖, 廖振方.针板电极荷电液体射流不稳定性分析[J].农业机械学报, 2009, 40(8): 86-91. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb200908018

    Wang Z H, Liao Z F. Analysis of instability for charged liquid jets with the needle-plate electrodes[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(8): 86-91. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb200908018
    [24] 霍元平, 王军锋, 左子文, 等.荷电液滴雾化演变过程的可视化研究[J].工程热物理学报, 2014, 35(8): 1559-1562. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201408022

    Huo Y P, Wang J F, Zuo Z W, et al. Visualization on the evolution of electrostatic atomization from capillary channel[J]. Journal of Engineering Thermophysics, 2014, 35(8): 1559-1562. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201408022
    [25] Kim H H, Kim J H, Ogata A. Time-resolved high-speed camera observation of electrospray[J]. Journal of Aerosol Science, 2011, 42(4): 249-263. doi: 10.1016/j.jaerosci.2011.01.007
  • 加载中
图(5)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  149
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-27
  • 修回日期:  2019-05-11
  • 刊出日期:  2019-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日