留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3 m×2 m结冰风洞试验技术研究进展

倪章松 刘森云 王桥 王梓旭 郭龙

倪章松, 刘森云, 王桥, 等. 3 m×2 m结冰风洞试验技术研究进展[J]. 实验流体力学, 2019, 33(6): 46-53. doi: 10.11729/syltlx20180115
引用本文: 倪章松, 刘森云, 王桥, 等. 3 m×2 m结冰风洞试验技术研究进展[J]. 实验流体力学, 2019, 33(6): 46-53. doi: 10.11729/syltlx20180115
Ni Zhangsong, Liu Senyun, Wang Qiao, et al. Research progress of test technologies for 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 46-53. doi: 10.11729/syltlx20180115
Citation: Ni Zhangsong, Liu Senyun, Wang Qiao, et al. Research progress of test technologies for 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 46-53. doi: 10.11729/syltlx20180115

3 m×2 m结冰风洞试验技术研究进展

doi: 10.11729/syltlx20180115
基金项目: 

飞机结冰致灾与防护关键基础问题研究项目 2015CB755800

空气动力学国家重点实验室研究基金资助项目 SKLA2019020401

详细信息
    作者简介:

    倪章松(1973-), 男, 安徽太湖人, 高级工程师。研究方向:飞行器结冰与防除冰技术。通信地址:四川省成都市青羊区二环路西二段75号(610072)。E-mail:13890111882@163.com

    通讯作者:

    刘森云, E-mail: cardclsy@163.com

  • 中图分类号: V211.7

Research progress of test technologies for 3 m×2 m icing wind tunnel

  • 摘要: 3 m×2 m结冰风洞于2013年建成,近年来该风洞的试验技术研究取得了一系列的进展。首先对风洞概况和相关试验技术进行了介绍,包括总体情况、性能指标、试验能力等,重点阐述了该结冰风洞已形成的云雾场参数校测、冰形特征捕获、热气防冰和电热除冰等试验技术。其次,对发动机、直升机结冰与防除冰、过冷大水滴和冰晶雨雾模拟等结冰风洞试验技术新的发展方向进行了分析和探讨,提出了发展思路。可为结冰风洞建设与试验技术的研究提供参考。
  • 图  1  3 m×2 m结冰风洞布局图

    Figure  1.  Sketch of the layout of 3 m×2 m IWT

    图  2  霜冰与明冰试验结果对比

    Figure  2.  Comparison of test results for rime ice and glass ice

    图  3  均匀度格栅结冰

    Figure  3.  Icing on grid

    图  4  用于MVD校测的PDI-FPDR仪器

    Figure  4.  PDI-FPDR instrumentation for MVD calibration

    图  5  风洞中的冰刀装置[24]

    Figure  5.  Icing blade device in wind tunnel[24]

    图  6  不同风速下的结冰质量[26]

    Figure  6.  Mass of ice at different flow speeds[26]

    图  7  传统热刀法冰形测量技术

    Figure  7.  Ice shape measurement method using hot knife

    图  8  激光扫描冰形非接触式测量技术

    Figure  8.  Ice shape non-contact measurement technology using laser scanning

    图  9  热气供气系统

    Figure  9.  Hot-air supply system

    图  10  发动机结冰与防除冰研究关系图

    Figure  10.  Research map of icing and de-icing techniques on aircraft engine

    图  11  发动机进气模拟系统

    Figure  11.  Engine intake simulation system

    图  12  SLD和冰晶大气特征示意[43]

    Figure  12.  Features of SLD and ice crystal atmosphere characteristics[43]

    图  13  发动机冰晶结冰研究内容

    Figure  13.  Research content of crystal-icing test technologies for aircraft engine

    表  1  结冰风洞主要设计参数[21]

    Table  1.   Main indexes of 3 m×2 m icing wind tunnel[21]

    主试验段 次试验段 高速试验段
    长×宽×高/(m×m×m) 3.0×2.0×6.5 4.8×3.2×9.0 2.0×1.5×4.5
    风速/(m·s-1) 21 ~210 8~78 26~256
    温度 范围:常温~-40 ℃速率:从20 ℃降到-20 ℃时, 时间不超过40 min不均匀性:≤1 ℃控制精度:±0.5 ℃
    湿度 范围:70%~100%(-15~-20 ℃); 100%(-20~-40 ℃)精度:±5%
    高度 结冰试验:0~7000 m高空低雷诺数试验:0~20 000 m
    云雾参数 液态水含量(LWC):0.2~3 g/m3平均水滴直径(MVD):10~300 μm雾化均匀区:60%试验段截面积
    下载: 导出CSV

    表  2  冰晶模拟技术指标

    Table  2.   Crystal-icing simulation technical indexes

    参数 最小值 最大值
    高度/km 1.2 15.0
    进气总温 -60 ℉(-51 ℃) 50 ℉(10 ℃)
    马赫数 0.15 0.80
    进气流量/(kg·s-1) 4.5 150.0
    LWC/(g·m-3) 0.5 8.0
    MVD/μm 15 >100(非全冻结)
    结冰时间/min 45(连续)
    下载: 导出CSV
  • [1] 裘燮纲, 韩凤华.飞机防冰系统[M].北京:航空专业教材编审组, 1985.
    [2] 朱春玲, 朱程香.飞机结冰及其防护[M].北京:科学出版社, 2016.

    Zhu C L, Zhu C X. Aircraft icing and its protection[M]. Beijing: Science Press, 2016.
    [3] 林贵平, 卜雪琴, 申晓斌, 等.飞机结冰与防冰技术[M].北京:北京航空航天大学出版社, 2016.

    Lin G P, Bu X Q, Shen X B, et al. Aircraft icing and anti-icing technology[M]. Beijing: Beihang University Press, 2016.
    [4] 王宗衍.冰风洞与结冰动力学[J].制冷学报, 1999, 20(4):15-17. http://d.old.wanfangdata.com.cn/Conference/3510382

    Wang Z Y. Icing wind tunnel and icing dynamics[J]. Journal of Refrigeration, 1999, 20(4):15-17. http://d.old.wanfangdata.com.cn/Conference/3510382
    [5] 战培国.结冰风洞研究综述[J].实验流体力学, 2007, 21(3): 92-96. doi: 10.3969/j.issn.1672-9897.2007.03.019

    Zhan P G.A review of research on icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3):92-96. doi: 10.3969/j.issn.1672-9897.2007.03.019
    [6] Gonsalez J, Arrington E. Aerodynamic calibration of the NASA Lewis icing research tunnel (1997 tests)[R]. AIAA-98-0633, 1998.
    [7] Gates H M, Knudsen J C. A case for optionally piloted vehicle research and development[R]. AIAA 2007-2760, 2007.
    [8] Liu H L, Fan T Y, Xing Y M, et al. Study for spray experiment and simulation of nozzle on icing wind tunnel[J]. Advanced Materials Research, 2012, 490-495:2573-2577. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMR.490-495.2573
    [9] 刘政崇, 彭强, 肖斌, 等. 3m×2m结冰风洞设计总体初步方案[C]//大型飞机关键技术高层论坛暨中国航空学会学术年会论文集. 2007.

    Liu C Z, Peng Q, Xiao B, et al. 3m×2m icing wind tunnel overall preliminary design scheme[C]//Proc of the BBS and annual conference of Chinese aviation association. 2007.
    [10] 熊建军, 倪章松, 李刚, 等. 3m×2m结冰风洞动力系统设计与应用[J].测控技术, 2018, 37(S2):204-208, 215. http://www.cnki.com.cn/Article/CJFDTotal-IKJS2018S2057.htm

    Xiong J J, Ni Z S, Li G, et al. Design and application of power system for 3m×2m icing wind tunnel[J]. Measurement and Control Technology, 2018, 37(S2):204-208, 215. http://www.cnki.com.cn/Article/CJFDTotal-IKJS2018S2057.htm
    [11] 丛成华, 彭强, 汪伏波, 等.基于粒子轨迹的结冰风洞收缩段优化设计数值模拟[J].航空动力学报, 2012, 27(7):1555-1561. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201207018

    Cong C H, Peng Q, Wang F B, et al. Numerical simulation on optimization design of contraction section in icing wind tunnel based on droplet trajectory[J]. Journal of Aerospace Power, 2012, 27(7): 1555-1561. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201207018
    [12] 战培国.国家大型结冰风洞运营管理研究[J].航空科学技术, 2014, 25(8):95-99. doi: 10.3969/j.issn.1007-5453.2014.08.021

    Zhan P G. Research on the development stratagem of national large icing wind tunnel[J]. Aeronautical Science and Technology, 2014, 25(8):95-99. doi: 10.3969/j.issn.1007-5453.2014.08.021
    [13] Imperato L, Leone G, Vecchione L. Spray nozzles experiment comparison in laboratory and icing wind tunnel testing[R]. AIAA 2000-0487, 2000.
    [14] Irvine T B, Oldenburg J R, Sheldon D W. The new icing cloud simulation system at NASA Lewis' icing research tunnel[R]. AIAA-98-143, 1998.
    [15] Addy H E Jr, Keith T G Jr. Investigation of the flow in the diffuser section of the NASA Lewis icing research tunnel[R]. AIAA-89-755, 1989.
    [16] Canacci V A, Gonsalez J C. Flow quality measurements in an aerodynamic model of NASA Lewis' icing research tunnel[R]. AIAA-95-2389, 1995.
    [17] Wright W B, Gent R W, Guffond D. DRA/NASA/ONERA collaboration on icing research, Part 2: prediction of airfoil ice accretion[R]. NASA CR-202349, 1997.
    [18] Wright W B, Bidwell C S. Additional improvements to the NASA Lewis ice accretion code LEWICE[R]. AIAA-95-752, 1995.
    [19] Masiulaniec K C, Wright W B. User's manual for the NASA Lewis ice accretion/heat transfer prediction code with electrothermal deicer input[R]. NASA Contractor Report 4530, 1994. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=XnXewb3bJ9iMSHOwY5sjiCtBqG4iyc2vaqX5twvf4+4=
    [20] Baruzzi G, Tran P, Habashi W G, et al. FENSAP-ICE: progress towards a rotorcraft full 3D icing simulation system[R]. AIAA 2003-0024, 2003.
    [21] 王梓旭, 沈浩, 郭龙, 等. 3m×2m结冰风洞云雾参数校测方法[J].实验流体力学, 2018, 32(2):61-67. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201802010

    Wang Z X, Shen H, Guo L, et al. Cloud calibration method of 3m×2m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2):61-67. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201802010
    [22] SAE Aerospace. Calibration and acceptance of icing wind tunnels: SAE ARP5905[S]. SAE, 2003.
    [23] SAE Aerospace. Icing wind tunnel interfacility comparison tests: SAE ARP5666[S]. SAE, 2012.
    [24] 郭龙, 程尧, 王梓旭.结冰风洞试验段云雾粒径测量与控制实验研究[J].实验流体力学, 2018, 32(2):55-60. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201802009

    Guo L, Cheng Y, Wang Z X. Experimental study on droplet size measurement and control of icing cloud in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2):55-60. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201802009
    [25] 易贤, 桂业伟, 杜雁霞, 等.结冰风洞水滴直径标定方法研究[J].实验流体力学, 2010, 24(5):36-41. doi: 10.3969/j.issn.1672-9897.2010.05.008

    Yi X, Gui Y W, Du Y X, et al. Study on calibration method of water droplet diameter in frozen wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(5):36-41. doi: 10.3969/j.issn.1672-9897.2010.05.008
    [26] 易贤, 朱国林, 王开春, 等.结冰风洞试验水滴直径选取方法[J].航空学报, 2010, 31(5):877-882. http://d.old.wanfangdata.com.cn/Periodical/hkxb201005001

    Yi X, Zhu G L, Wang K C, et al. Selection of water droplet diameter in icing wind tunnel test[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5):877-882. http://d.old.wanfangdata.com.cn/Periodical/hkxb201005001
    [27] 易贤, 王斌, 李伟斌, 等.飞机结冰冰形测量方法研究进展[J].航空学报, 2017, 38(2):13-24. http://d.old.wanfangdata.com.cn/Periodical/hkxb201702002

    Yi X, Wang B, Li W B, et al. Research progress on ice shape measurement approaches for aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):13-24. http://d.old.wanfangdata.com.cn/Periodical/hkxb201702002
    [28] 李伟斌, 易贤, 杜雁霞, 等.基于变分分割模型的结冰冰形测量方法[J].航空学报, 2017, 38(1):95-102. http://d.old.wanfangdata.com.cn/Periodical/hkxb201701009

    Li W B, Yi X, Du Y X, et al. A measurement approach for ice shape based on variational segmentation model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):95-102. http://d.old.wanfangdata.com.cn/Periodical/hkxb201701009
    [29] Gong X L, Bansmer S. Laser scanning applied for ice shape measurements[J]. Cold Regions Science and Technology, 2015, 115:64-76. doi: 10.1016/j.coldregions.2015.03.010
    [30] Gong X L, Bansmer S. 3-D ice shape measurements using mid-infrared laser scanning[J]. Optics express, 2015, 23(4): 4908-4926. doi: 10.1364/OE.23.004908
    [31] Lee S, Broeren A P, Addy H E, et al. Development of 3D ice accretion measurement method[R]. AIAA 2012-2938, 2012.
    [32] Mercer C R, Vargas M, Oldenburg J R. A preliminary study on ice shape tracing with a laser light sheet[R]. NASA TM-105964, 1993. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Jm38EmO+6rMeqp94hH06UzDsIEWbkcWVZweV/yV61cY=
    [33] 郭之强, 郑梅, 董威, 等.表面凸起对机翼热气防冰腔内换热强化的影响[J].航空学报, 2017, 38(2):81-90. http://d.old.wanfangdata.com.cn/Periodical/hkxb201702008

    Guo Z Q, Zheng M, Dong W, et al. Influence of surface convex on heat transfer enhancement of wing hot air anti-icing system. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):81-90. http://d.old.wanfangdata.com.cn/Periodical/hkxb201702008
    [34] Teng X, Dong J K, Chen H W, et al. Experimental investigation of deicing characteristics using hot air as heat source[J]. Applied Thermal Engineering, 2016, 107:681-688. doi: 10.1016/j.applthermaleng.2016.05.162
    [35] Pellissier M P C, Habashi W G, Pueyo A. Optimization via FENSAP-ICE of aircraft hot-air anti-icing systems[J]. Journal of Aircraft, 2012, 48(1):265-276. http://cn.bing.com/academic/profile?id=f87e65f94159e4cee521cec855b8648e&encoded=0&v=paper_preview&mkt=zh-cn
    [36] Papadakis M, Wong S H, Yeong H W, et al. Icing tunnel experiments with a hot air anti-icing system[R]. AIAA 2008-444, 2008.
    [37] 肖春华, 桂业伟, 林贵平.飞机电热除冰的研究进展与展望[J].科技导报, 2011, 29(18):69-73. doi: 10.3981/j.issn.1000-7857.2011.18.011

    Xiao C H, Gui Y W, Lin G P. A review of studies of aircraft electrothermal de-icing[J]. Science & Technology Review, 2011, 29(18):69-73. doi: 10.3981/j.issn.1000-7857.2011.18.011
    [38] Pourbagian M, Habashi W G. Aero-thermal optimization of in-flight electro-thermal ice protection systems in transient de-icing mode[J]. International Journal of Heat and Fluid Flow, 2015, 54(3):167-182. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c0b27abc1a8d9a761c3c4cb634e1446f
    [39] 杨倩, 常士楠, 袁修干.发动机进气道水滴撞击特性分析[J].北京航空航天大学学报, 2002, 28(3):362-365. doi: 10.3969/j.issn.1001-5965.2002.03.031

    Yang Q, Chang S N, Yuan X G. Analysis of droplet impact characteristics in engine inlet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(3):362-365. doi: 10.3969/j.issn.1001-5965.2002.03.031
    [40] 符澄, 彭强, 张海洋, 等.结冰风洞喷嘴雾化特性研究[J].实验流体力学, 2015, 29(2):32-36. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201502006

    Fu C, Peng Q, Zhang H Y, et al. The atomization characteristics research for spray nozzle of icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(2):32-36. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201502006
    [41] Flemming R J. The past twenty years of icing research and development at Sikorsky Aircraft[R]. AIAA-2002-0238, 2002.
    [42] 李国知, 曹义华, 钟国.旋翼结冰模型与纵列式直升机平衡特性分析[J].北京航空航天大学学报, 2010, 36(9):1034-1037. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201009007

    Li G Z, Cao Y H, Zhong G. Rotor icing model and balancing characteristics analysis of tandem helicopter [J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(9):1034-1037. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201009007
    [43] Renato(Ron) C. NASA capabilities in aircraft icing[R]. NASA Technical Report GRC-E-DAA-TN40057, 2017.
    [44] Zhang C, Wang F X, Kong W L, et al. The characteristics of SLD icing accretions and aerodynamic effects on high-lift configurations[R]. AIAA 2015-3385, 2015.
    [45] Potapczuk M G, Tsao J C. Further examinations of bimodal SLD ice accretion in the NASA icing research tunnel[R]. AIAA 2018-3182, 2018.
    [46] Oliver M J. Validation ice crystal icing engine test in the propulsion systems laboratory at NASA Glenn Research Center [R]. AIAA-2014-2898, 2014.
    [47] Addy H E Jr, Veres J P. An overview of NASA engine ice-crystal icing research[R]. NASA/TM-2011-21725, 2011.
    [48] Veres J P, Jorgenson P C E, Coennen R. Modeling of commercial turbofan engine with ice crystalingestion; follow-on[R]. AIAA 2014-2899, 2014.
    [49] Flegel A B. Ice crystal icing research at NASA[R]. AIAA 2017-4085, 2017.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  200
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-28
  • 修回日期:  2019-09-23
  • 刊出日期:  2019-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日