留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸气式高超声速飞行器冷态测力试验支撑校正

王晓朋 张陈安 刘春风 王发民 叶正寅

王晓朋, 张陈安, 刘春风, 等. 吸气式高超声速飞行器冷态测力试验支撑校正[J]. 实验流体力学, 2018, 32(6): 27-33. doi: 10.11729/syltlx20180116
引用本文: 王晓朋, 张陈安, 刘春风, 等. 吸气式高超声速飞行器冷态测力试验支撑校正[J]. 实验流体力学, 2018, 32(6): 27-33. doi: 10.11729/syltlx20180116
Wang Xiaopeng, Zhang Chen'an, Liu Chunfeng, et al. Support interference and correction of cold-flow force test for air-breathing hypersonic vehicle in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 27-33. doi: 10.11729/syltlx20180116
Citation: Wang Xiaopeng, Zhang Chen'an, Liu Chunfeng, et al. Support interference and correction of cold-flow force test for air-breathing hypersonic vehicle in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 27-33. doi: 10.11729/syltlx20180116

吸气式高超声速飞行器冷态测力试验支撑校正

doi: 10.11729/syltlx20180116
基金项目: 

中国科学院战略性先导专项 XDA17030100

详细信息
    作者简介:

    王晓朋(1986-), 男, 河南许昌人, 博士研究生。研究方向:飞行器气动布局设计。通信地址:北京市海淀区北四环西路15号中国科学院力学研究所(100190)。E-mail:378679333@qq.com

    通讯作者:

    张陈安, E-mail:zhch_a@imech.ac.cn

  • 中图分类号: V411.7

Support interference and correction of cold-flow force test for air-breathing hypersonic vehicle in wind tunnel

  • 摘要: 吸气式高超声速飞行器整体外形与推进系统性能高度耦合,在风洞测力试验中,支撑机构不可避免会对其气动特性产生影响。针对该类飞行器冷态气动力试验中存在的支撑干扰问题,以基于乘波前体的机体/发动机一体化飞行器为研究对象开展试验和计算研究,对比了尾支撑、背支撑和背支撑+虚拟尾支撑3种风洞支撑机构对飞行器主要气动力参数的影响,并通过比较不同支撑方式的测量结果对气动力进行了校正。试验在来流马赫数4和6两个工况下进行。结果表明:相对于背支撑,尾支撑对飞行器气动力参数的影响较小,更适合作为吸气式高超声速飞行器冷态测力试验的支撑机构;结合背支撑和背支撑+虚拟尾支撑的方式,可以有效地对尾支撑测量结果进行校正,提供更为精准的气动力试验数据。
  • 图  1  一体化飞行器气动布局方案

    Figure  1.  Aerodynamic configuration of the integrated vehicle

    图  2  模型实物图

    Figure  2.  Test model

    图  3  背支撑+虚拟尾支撑实物图

    Figure  3.  Physical picture of the back blade + dummy rear sting mount

    图  4  背支撑/背支撑+虚拟支撑与模型的连接

    Figure  4.  Connection between models and supporting mechanisms

    图  5  升力系数随迎角变化曲线

    Figure  5.  Curves of lift coefficients with attack angles

    图  6  阻力系数随迎角变化曲线

    Figure  6.  Curves of drag coefficients with attack angles

    图  7  升阻比随迎角变化曲线

    Figure  7.  Curves of lift-to-drag ratios with attack angles

    图  8  俯仰力矩系数随迎角变化曲线

    Figure  8.  Curves of moment coefficients with attack angles

    图  9  壁面网格和对称面网格分布情况

    Figure  9.  Surface meshes of the computational models

    图  10  尾支撑+虚拟支撑试验流场与计算流场对比(Ma=4,α=0°)

    Figure  10.  Comparison of flow fields obtained by experiment and CFD when Ma=4, α=0°

    图  11  尾支撑试验流场与计算流场对比(Ma=6,α=0°)

    Figure  11.  Comparison of flow fields obtained by experiment and CFD when Ma=6, α=0°

    图  12  Ma=4时升力系数随迎角变化曲线

    Figure  12.  Curves of lift coefficients with attack angles when Ma=4

    图  13  Ma=4时阻力系数随迎角变化曲线

    Figure  13.  Curves of drag coefficients with attack angles when Ma=4

    图  14  Ma=4时升阻比系数随迎角变化曲线

    Figure  14.  Curves of lift-to-drag ratios with attack angles when Ma=4

    图  15  Ma=4时俯仰力矩系数随迎角变化曲线

    Figure  15.  Curves of moment coefficients with attack angles when Ma=4

    图  16  Ma=6时升力系数随迎角变化曲线

    Figure  16.  Curves of lift coefficients with attack angles when Ma=6

    图  17  Ma=6时阻力系数随迎角变化曲线

    Figure  17.  Curves of drag coefficients with attack angles when Ma=6

    图  18  Ma=6时升阻比系数随迎角变化曲线

    Figure  18.  Curves of lift-to-drag ratios with attack angles when Ma=6

    图  19  Ma=6时俯仰力矩系数随迎角变化曲线

    Figure  19.  Curves of moment coefficients with attack angles when Ma=6

    图  20  Ma=4, α=0°时尾支撑和无支撑时模型下表面压力分布对比

    Figure  20.  Comparison of pressure distributions on the lower surface of the model with rear sting and unsupported when Ma=4, α=0°

    图  21  Ma=4, α=0°时背支撑和无支撑时模型上表面压力分布对比

    Figure  21.  Comparison of pressure distributions on the upper surface of the model with back blade and unsupported when Ma=4, α=0°

    图  22  升力系数随迎角变化曲线

    Figure  22.  Curves of lift coefficients with attack angles

    图  23  阻力系数随迎角变化曲线

    Figure  23.  Curves of drag coefficients with attack angles

    图  24  升阻比随迎角变化曲线

    Figure  24.  Curves of lift-to-drag ratios with attack angles

    图  25  俯仰力矩系数随迎角变化曲线

    Figure  25.  Curves of moment coefficients with attack angles

    表  1  实验条件

    Table  1.   Flow conditions

    Ma p0/MPa T0/℃ Re/m-1
    3.970 0.5 25 2.92×107
    5.933 2.0 191 1.80×107
    下载: 导出CSV
  • [1] McClinton C R, Hunt J L, Ricketts R H, et al. Airbreathing hypersonic technology vision vehicles and development dreams[R]. AIAA-1999-4978, 1999.
    [2] Kobayashi H, Sato T, Tanatsugu N. Optimization of airbreathing propulsion system for the TSTO spaceplane[R]. AIAA-2001-1912, 2001.
    [3] 邓帆, 杜新, 谭慧俊, 等.吸气式高超声速飞行器冷流试验设计及验证[J].北京航空航天大学学报, 2014, 40(10):1341-1348. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201410004

    Deng F, Du X, Tan H J, et al. Design and validation of cold-flow test for air-breathing hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(10):1341-1348. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201410004
    [4] 王泽江, 孙鹏, 李绪国, 等.吸气式高超声速飞行器内外流同时测力试验[J].航空学报, 2015, 36(3):797-803. http://d.old.wanfangdata.com.cn/Periodical/hkxb201503011

    Wang Z J, Sun P, Li X G, et al. Force test on internal and external flow simultaneous measurement of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):797-803. http://d.old.wanfangdata.com.cn/Periodical/hkxb201503011
    [5] 罗金玲, 周丹, 康宏琳, 等.典型气动问题试验方法研究的综述[J].空气动力学学报, 2014, 32(5):600-609. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201405006

    Luo J L, Zhou D, Kang H L, et al. Summarization of experimental methods associated with typical aerodynamic issuses[J]. Acta Aerodynamica Sinica, 2014, 32(5):600-609. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201405006
    [6] 唐志共, 许晓斌, 杨彦广, 等.高超声速风洞气动力试验技术进展[J].航空学报, 2015, 36(1):86-97. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501008

    Tang Z G, Xu X B, Yang Y G, et al. Research progress on hypersonic wind tunnel aerodynamic testing techniques[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):86-97. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501008
    [7] Holland S D, Woods W C, Engelund W C. Hyper-X research vehicle experimental aerodynamics test program overview[J]. Journal of Spacecraft and Rockets, 2001, 38(6):828-835. doi: 10.2514/2.3772
    [8] Frendi A. On the CFD support for the Hyper-X aerodynamic database[C]//Proc of the 37th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings. 1999.
    [9] Voland R T, Rock K E, Huebner L D, et al. Hyper-X engine design and ground test program[R]. AIAA-1998-1532, 1998.
    [10] 张红英, 程克明, 伍贻兆.某高超飞行器流道冷流特征及气动力特性研究[J].空气动力学学报, 2009, 27(1):119-123. doi: 10.3969/j.issn.0258-1825.2009.01.022

    Zhang H Y, Cheng K M, Wu Y Z. A study on the flowpath and the aerodynamic characteristics of a hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2009, 27(1):119-123. doi: 10.3969/j.issn.0258-1825.2009.01.022
    [11] 范晓樯, 李桦, 易仕和, 等.侧压式进气道与飞行器机体气动一体化设计及实验[J].推进技术, 2004, 25(6):499-502. doi: 10.3321/j.issn:1001-4055.2004.06.005

    Fan X Q, Li H, Yi S H, et al. Experiment of aerodynamic performance for hypersonic vehicle integrated with sidewall compression inlet[J]. Journal of Propulsion Technology, 2004, 25(6):499-502. doi: 10.3321/j.issn:1001-4055.2004.06.005
    [12] 金亮, 柳军, 罗世彬, 等.高超声速一体化飞行器冷流状态气动特性研究[J].实验流体力学, 2010, 24(1):42-45. doi: 10.3969/j.issn.1672-9897.2010.01.008

    Jin L, Liu J, Luo S B, et al. Aerodynamic characterization of an integrated hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):42-45. doi: 10.3969/j.issn.1672-9897.2010.01.008
    [13] 吴颖川, 贺元元, 贺伟, 等.吸气式高超声速飞行器机体推进一体化技术研究进展[J].航空学报, 2015, 36(1):245-260. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501020

    Wu Y C, He Y Y, He W, et al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):245-260. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501020
    [14] 谢飞, 许晓斌, 舒海锋, 等.吸气式高超声速飞行器气动力试验研究[C]//第九届全国实验流体力学学术会议文集(上册). 2013.

    Xie F, Xu X B, Shu H F, et al. Experiment study of aerodynamic performance for airbreathing hypersonic vehicle[C]//Proc of the 9th Chinese Experiments in Fluid Mechanics Technologies Conference. 2013.
    [15] Yin G L, Qin Y P, Yang Y. Numerical and experiment studies of the support interference in the force prediction of an airbreathing hypersonic flight vehicle[C]//Proc of the 21st AIAA International Space Planes and Hypersonic Systems and Technologies Conferences. 2017.
    [16] 王发民, 李立伟, 姚文秀, 等.乘波飞行器构型方法研究[J].力学学报, 2004, 36(5):513-519. http://d.old.wanfangdata.com.cn/Periodical/lxxb200405001

    Wang F M, Li L W, Yao W X, et al. Research on waverider configuration method[J]. Acta Mechanica Sinica, 2004, 36(5):513-519. http://d.old.wanfangdata.com.cn/Periodical/lxxb200405001
  • 加载中
图(25) / 表(1)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  81
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-03
  • 修回日期:  2018-10-19
  • 刊出日期:  2018-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日