留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The validity analysis of ground simulation test for non-ablative thermal protection materials

Wang Guolin Meng Songhe Jin Hua

王国林, 孟松鹤, 金华. 非烧蚀防热材料地面模拟试验有效性分析[J]. 实验流体力学, 2018, 32(6): 79-87. doi: 10.11729/syltlx20180122
引用本文: 王国林, 孟松鹤, 金华. 非烧蚀防热材料地面模拟试验有效性分析[J]. 实验流体力学, 2018, 32(6): 79-87. doi: 10.11729/syltlx20180122
Wang Guolin, Meng Songhe, Jin Hua. The validity analysis of ground simulation test for non-ablative thermal protection materials[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 79-87. doi: 10.11729/syltlx20180122
Citation: Wang Guolin, Meng Songhe, Jin Hua. The validity analysis of ground simulation test for non-ablative thermal protection materials[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 79-87. doi: 10.11729/syltlx20180122

非烧蚀防热材料地面模拟试验有效性分析

doi: 10.11729/syltlx20180122
基金项目: 国家自然科学基金青年科学基金项目(11502058),黑龙江省博士后启动基金项目(LBH-Q1605),中央高校基本科研业务专项资金资助项目(HIT.NSRIF.201823)
详细信息
  • 中图分类号: V211.73

The validity analysis of ground simulation test for non-ablative thermal protection materials

More Information
    Author Bio:

    Wang Guolin (1973-), male, born in Dingxi city, Gansu province, doctoral candidate, researcher.Engaged in non-equilibrium and material's coupled heat and mass transfer research.Address:Hypervelocity Aerodynamics Institute of China Aerodynamics Research and Development Center (621000).E-mail:wgl65269@163.com

    Corresponding author: Jin Hua, E-mail:jinhua2007@hit.edu.cn
  • 摘要: 流场化学非平衡度与材料表面催化反应的耦合控制着服役于化学非平衡流场中非烧蚀防热材料表面的气动热载荷,若在该类防热材料性能模拟研究中忽略这一耦合效应,地面模拟试验将无法获得材料的有效使用性能。为此,本文依据钝头体高超声速飞行器边界层驻点热流关系式,分析了影响驻点热流的主要流场参数、地面高焓模拟设备所提供的高焓超声速流场特点以及与飞行热环境之间的主要差异,采用CFD分析了"三参数"模拟方法的有效性。针对化学非平衡边界层驻点传热分析,提出"四参数"模拟方法并分析了"四参数"模拟方法中离解焓无法模拟时的防热材料性能并提出初步解决方法。
  • 图  1  随着αDamw的变化规律

    Figure  1.  The variation of along with α and Damw

    图  2  平衡下α随压力和焓值的变化

    Figure  2.  The equilibrium air α changed with pressure and enthalpy

    图  3  各参数沿着电弧风洞喷管轴线和出口的分布

    Figure  3.  Distribution of parameters along the axis and exit of the AHWT nozzle

    图  4  钝头试样(RnF=200mm)驻点线上参数分布

    Figure  4.  Parameter distributions on the stagnation-point line of the blunt body sample with RnF=200mm

    图  5  球头试样(RnF=35mm)驻点线上参数分布

    Figure  5.  The parameter distributions on RnF=35mm vehicle and stagnation-point line of the test sample

    图  6  Damw变化规律

    Figure  6.  The variation of with Damw

    图  7  在不同θ条件下Damw的变化规律(其中θ=αF/αS, αS=0.4)

    Figure  7.  The variation of with Damw under different θ(where, θ=αF/αS, αS=0.4)

    表  1  The states of supersonic flow fields in arc-heated wind tunnels for calculation

    Table  1.   The states of supersonic flow fields in arc-heated wind tunnels for calculation

    AHWT
    In-chamber pressure/kPa 180.0
    In-chamber enthalpy/(kJ·kg-1) 2.3×104
    Nozzle throat/mm Φ30.0
    Nozzle outlet/mm Φ200.0
    下载: 导出CSV

    表  2  The flight conditions

    Table  2.   The flight conditions

    RnF/mm UF/(m·s-1) pF/Pa TF/K CFO2 CFN2 COF CNF CNOF
    Case 1
    Case 2
    200
    35
    6930 8 229.5 0.234 0.766 0 0 0
    下载: 导出CSV

    表  3  The AHWT simulation conditions

    Table  3.   The AHWT simulation conditions

    RnS/mm US(m·s-1) pS/Pa TS/K CSO2 CSN2 COS CNS CNOS
    Case 1 35 4654 107 920 0 0.508 0.234 0.258 0
    下载: 导出CSV

    表  4  The stagnation-point heat flux & pressure for flight environment

    Table  4.   The stagnation-point heat flux & pressure for flight environment

    RnF/mm pFs/Pa Heat flux of full surface catalysis /(kW·m-2) Heat flux of non surface catalysis /(kW·m-2)
    Case 1 200 5540 1096 830 1926 1089 0 1089 0.565
    Case 2 35 5540 3247 1531 4778 3176 50 3176 0.665
    下载: 导出CSV

    表  5  The stagnation-point heat flux & pressure for simulated environment

    Table  5.   The stagnation-point heat flux & pressure for simulated environment

    RnF/mm psF/Pa Heat flux of full surface catalysis /(kW·m-2) Heat flux of non surface catalysis /(kW·m-2)
    Case 1 35.00 5500 1118 834 1952 1120 0 1120 0.574
    Case 2 26.65 5500 2483 2391 4874 2229 0 2229 0.457
    下载: 导出CSV

    表  6  The compared of conduction & diffussion stagnation-point heat flux between flight and simulated environment

    Table  6.   The compared of conduction & diffussion stagnation-point heat flux between flight and simulated environment

    Case 1 2.01% 0.482% 1.35% 2.85% 2.85%
    Case 2 -23.53% 56.17% 2.01% -29.82% -29.82%
    下载: 导出CSV
  • [1] Matthew M, Eric M, Ronald P. Effect of surface catalysis on measured heat transfer in expansion tunnel facility[R]. AIAA-2012-0651, 2012.
    [2] Kurotaki T. Construction of catalytic model on SiO2-based surface and application to real trajectory[R]. AIAA-2000-2366, 2000.
    [3] Voinov L, Zalogin G N, Lunev V V, et al. Comparative analysis of laboratory and full-scale data on the catalycity of the heat shield for the Bor and Buran orbital vehicles[J]. Cosmonautics and Rocket Production. 1994(2): 51-57. http://www.sciencedirect.com/science/article/pii/0966979594900515
    [4] Kolodziej P, Stewart D A. Nitrogen recombination on high-temperature reusable surface insulation and the analysis of its effect on surface catalysis[R]. AIAA-1987-1637, 1987.
    [5] Scott C D. Catalytic recombination of nitrogen and oxygen on hig-temperature reusable surface insulation[R]. AIAA-1980-1477, 1980.
    [6] Stewart D A, Rakich J V, Lanfranco M J. Catalytic surface effects experiments on space shuttle[R]. AIAA-1981-1143, 1981.
    [7] Rakich J V, Stewart D A, Lanfranco M J. Results of a flight experiment of the catalytic efficiency of the space shuttle heat shield[R]. AIAA-1982-944, 1982.
    [8] Zoby E V, Gupta R N, Simmonds A L. Temperature dependent reaction-rate expression for oxygen recombination at shuttle entry conditions[R]. AIAA-1984-224, 1984.
    [9] Shim J L, Moss J N, Simmonds A L. Viscous-shock-layer heating analysis for the shuttle windward symmetry plane with surface finite catalytic recombination rates[R]. AIAA-1982-0842, 1982.
    [10] Jumper E J. Recombination of oxygen and nitrogen on silica-based thermal protection surfaces: mechanism and implication[R]. AIAA-1993-477, 1993.
    [11] Melin G A, Madix R J. Energy accommodation during oxygen atom recombination on metal surface[J]. Transactions of the Faraday Society, 1971, 67: 198-211. doi: 10.1039/tf9716700198
    [12] Halpern B, Rosner D E. Chemical energy accommodation at catalyst surface. Flow reactor studies of the association of nitrogen atoms on metals at high temperatures[J]. Journal of the Chemical Society Faraday Transactions, 1978, 74: 1883-1912. doi: 10.1039/f19787401883
    [13] Kolesnikov A F. The concept of local simulation for stagnation point heat transfer in hypersonic flow: applications and validation[R]. AIAA-2000-2515, 2000.
    [14] Kovalev V L, Kolesnikov A F. Experimental and theoretical simulation of heterogeneous catalysis in aerothermochemistry(a review)[J]. Fluid Dynamics, 2005, 40(5): 669-693. doi: 10.1007/s10697-005-0106-4
    [15] Fay J A, Riddell F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aeronautical Sciences, 1958, 25(2): 73-85. http://www.ams.org/mathscinet-getitem?mr=94043
    [16] Goulard R. On catalytic recombination rates in hypersonic stagnation on heat transfer[J]. Journal of Jet Propulsion, 1958, 28(11): 737-745. doi: 10.2514/8.7444
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  89
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-11
  • 修回日期:  2018-08-14
  • 刊出日期:  2018-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日