留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尖锥前体飞行器FADS系统的人工神经网络建模及风洞试验研究

王鹏 金鑫

王鹏, 金鑫. 尖锥前体飞行器FADS系统的人工神经网络建模及风洞试验研究[J]. 实验流体力学, 2019, 33(5): 57-63. doi: 10.11729/syltlx20180125
引用本文: 王鹏, 金鑫. 尖锥前体飞行器FADS系统的人工神经网络建模及风洞试验研究[J]. 实验流体力学, 2019, 33(5): 57-63. doi: 10.11729/syltlx20180125
Wang Peng, Jin Xin. Study on artificial neural network modeling and wind tunnel test for the FADS system applied to the vehicle with sharp nosed fore-bodies[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 57-63. doi: 10.11729/syltlx20180125
Citation: Wang Peng, Jin Xin. Study on artificial neural network modeling and wind tunnel test for the FADS system applied to the vehicle with sharp nosed fore-bodies[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 57-63. doi: 10.11729/syltlx20180125

尖锥前体飞行器FADS系统的人工神经网络建模及风洞试验研究

doi: 10.11729/syltlx20180125
详细信息
    作者简介:

    王鹏(1984-), 男, 山东潍坊人, 硕士, 高级工程师。研究方向:嵌入式大气数据传感系统, 气动热数值计算与工程估算。通信地址:北京市丰台区7201信箱56分箱(100074)。E-mail:pengwang0413@163.com

    通讯作者:

    王鹏,E-mail:pengwang0413@163.com

  • 中图分类号: V448

Study on artificial neural network modeling and wind tunnel test for the FADS system applied to the vehicle with sharp nosed fore-bodies

  • 摘要: 针对一种用于尖锥前体飞行器的嵌入式大气数据传感(Flush Air Data Sensing,FADS)系统的解算模型及精度进行研究。针对尖锥外形特征,首先基于钝头体FADS系统的理论模型确定其测压孔配置;然后对确定的测压孔进行典型状态的风洞试验测试,并比对了数值计算数据与风洞试验数据;最后基于人工神经网络建模技术构建了FADS系统的网络解算模型及算法。结果表明:针对尖锥外形测压孔配置特征,基于人工神经网络建模技术的算法解算精度较好,迎角、侧滑角、静压、马赫数的网络输出值与试验值吻合较好,输出的测试误差(绝对值)分别小于0.1°、0.1°、50.0 Pa及0.01;同时也证实了人工神经网络算法在FADS系统中有进一步发展的空间。
  • 图  1  测压孔圆周角及圆锥角

    Figure  1.  Clock angle and cone angle definitions for pressure port i

    图  2  FADS系统测压孔配置

    Figure  2.  Pressure ports configuration for FADS system

    图  3  FD-06风洞及模型示意图

    Figure  3.  FD-06 wind tunnel and model

    图  4  测压孔2、4、6、8、10、12的风洞试验数据

    Figure  4.  Wind tunnel test data for pressure ports 2, 4, 6, 8, 10, 12

    图  5  测压孔1、3、5、7、9、11的风洞试验数据

    Figure  5.  Wind tunnel test data for pressure ports 1, 3, 5, 7, 9, 11

    图  6  计算网格

    Figure  6.  Computational grid

    图  7  Ma=3.01时壁面压力分布云图

    Figure  7.  Wall pressure distribution for Ma=3.01

    图  8  流场结构(压力云图)

    Figure  8.  Flow distribution (pressure contours)

    图  9  测压孔2、4的风洞试验与CFD结果对比

    Figure  9.  Pressure comparisons between wind tunnel test and CFD results for ports 2 and 4

    图  10  测压孔1、3的风洞试验与CFD结果对比

    Figure  10.  Pressure comparisons between wind tunnel test and CFD results for ports 1 and 3

    图  11  单隐含层的RBF神经网络模型

    Figure  11.  RBF neural network model with single hidden layer

    图  12  飞行参数输出值与试验值比较

    Figure  12.  Comparisons of flight parameters between neural network outputs and wind tunnel test

    图  13  输出飞行参数误差分布

    Figure  13.  Error distribution for flight parameters

    表  1  测压孔位置信息

    Table  1.   Detailed information for pressure ports

    测压孔编号 圆周角φi /(°) 圆锥角λi/(°)
    0 0 0
    1、5、9 0 74
    2、6、10 90 74
    3、7、11 180 74
    4、8、12 270 74
    下载: 导出CSV
  • [1] Ellsworth J C, Whitmore S A. Simulation of a flush air-data system for transatmospheric vehicles[J]. Journal of Spacecraft and Rockets, 2008, 45(4):716-732. doi: 10.2514/1.33541
    [2] Siemers P M III, Wolf H, Henry M. Shuttle Entry Air Data System (SEADS)-flight verification of an advanced air data system concept[R]. AIAA-88-2014, 2014.
    [3] Larson T J, Siemers P M III. Use of nose cap and fuselage pressure orifices for determination of air data for Space Shuttle Orbiter below supersonic speeds[R]. NASA TR-1643, 1980.
    [4] Whitmore S A, Cobleigh B R, Haering E A Jr. Design and calibration of the X-33 Flush Airdata Sensing (FADS) system[R]. NASA/TM-1998-206540, 1998.
    [5] Larson T J, Whitmore S A, Ehernberger L J, et al. Qualitative evaluation of a flush air data system at transonic speeds and high angles of attack[R]. NASA TP-2716, 1987.
    [6] Larson T J, Siemers P M III. Subsonic tests of an all-flush-pressure-orifice air data system[R]. NASA TP-1871, 1981.
    [7] Terry L J, Timothy R M, Siemers P M III. Wind-tunnel investigation of a flush airdata system at Mach numbers from 0.7 to 1.4[R]. NASA TM-101697, 1990.
    [8] Westhelle C H. X-38 backup Air Data System(AeroDAD)[R]. AIAA 2002-0007, 2002.
    [9] Ellsworth J C, Whitmore S A. Reentry air data system for a sub-orbital spacecraft based on X-34 design[R]. AIAA 2007-1200, 2007.
    [10] Crowther W J, Lamont P J. A neural network approach to the calibration of a flush air data system[J]. The Aeronautical Journal, 2011, 105(1044):85-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cb3d4fbbfee5264c0a7aa7990ca5627b
    [11] Calia A, Denti E, Galatolo R, et al. Air data computation using neural networks[J]. Journal of Aircraft, 2008, 45(6):2078-2083. doi: 10.2514/1.37334
    [12] Rohloff T J, Whitmore S A, Catton I. Fault-tolerant neural network algorithm for flush air data sensing[J]. Journal of Aircraft, 1999, 36(3):541-549. doi: 10.2514/2.2489
    [13] Samy I, Postlethwaite I, Gu D W. Neural-network-based flush air data sensing system demonstrated on a mini air vehicle[J]. Journal of Aircraft, 2010, 47(1):18-31. doi: 10.2514/1.44157
    [14] 王鹏, 胡远思, 金鑫.尖楔前体飞行器FADS系统驻点压力对神经网络算法精度的影响[J].宇航学报, 2016, 37(9):1072-1079. doi: 10.3873/j.issn.1000-1328.2016.09.006

    Wang P, Hu Y S, Jin X. Effect of stagnation pressure on the neural network algorithm accuracy for the FADS system applied to the vehicle with sharp wedged fore-bodies[J]. Journal of Astronautics, 2016, 37(9):1072-1079. doi: 10.3873/j.issn.1000-1328.2016.09.006
    [15] 王鹏, 金鑫, 张卫民, 等.钝头机体用FADS系统的校准[J].实验流体力学, 2016, 30(2):97-102. http://www.syltlx.com/CN/abstract/abstract10924.shtml

    Wang P, Jin X, Zhang W M. Calibration for the FADS system applied to the vehicle with blunt fore-bodies[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2):97-102. http://www.syltlx.com/CN/abstract/abstract10924.shtml
    [16] 王鹏, 金鑫, 张卫民. FADS系统测压孔配置对攻角校准的影响[J].战术导弹技术, 2013, (2):51-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zsddjs201302011

    Wang P, Jin X, Zhang W M. The effect of configuration of pressure ports on calibration for angle of attack in FADS system[J]. Tactical Missile Technology, 2013, (2):51-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zsddjs201302011
    [17] Li Y, Sundararajan N, Saratchandran P. Analysis of minimal radial basis function network algorithm for real-time identifi-cation of nonlinear dynamic systems[J]. IEE Proceedings-Control Theory and Applications, 2000, 147(4):476-484. doi: 10.1049/ip-cta:20000549
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  273
  • HTML全文浏览量:  176
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-11
  • 修回日期:  2019-06-13
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日