留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

侧喷干扰高温燃气效应讨论

张庆兵 逯雪铃 沙莎

张庆兵, 逯雪铃, 沙莎. 侧喷干扰高温燃气效应讨论[J]. 实验流体力学, 2019, 33(6): 34-40. doi: 10.11729/syltlx20180161
引用本文: 张庆兵, 逯雪铃, 沙莎. 侧喷干扰高温燃气效应讨论[J]. 实验流体力学, 2019, 33(6): 34-40. doi: 10.11729/syltlx20180161
Zhang Qingbing, Lu Xueling, Sha Sha. Effects of the high temperature exhaust plume reaction on lateral jet interactions[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 34-40. doi: 10.11729/syltlx20180161
Citation: Zhang Qingbing, Lu Xueling, Sha Sha. Effects of the high temperature exhaust plume reaction on lateral jet interactions[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 34-40. doi: 10.11729/syltlx20180161

侧喷干扰高温燃气效应讨论

doi: 10.11729/syltlx20180161
详细信息
    作者简介:

    张庆兵(1967-), 男, 江西抚州人, 研究员。研究方向:飞行器空气动力学。通信地址:北京市142信箱30分箱(100854)。E-mail:zqb0818@sina.com

    通讯作者:

    逯雪铃, E-mail:snowring6954@163.com

  • 中图分类号: V411.7

Effects of the high temperature exhaust plume reaction on lateral jet interactions

  • 摘要: 在实验或计算中,通常采用冷喷流(或某种程度上的等效气体喷流,或无反应多组分混合气体喷流)开展侧喷干扰研究,这种处理方法在具有轨迹控制发动机的未来先进飞行器的设计中可能会产生问题。简要回顾了侧喷干扰气体模型对力和力矩影响的实验和计算研究成果,针对满足实际应用需求的大喷流动量比情形,开展了冷喷流、无反应气体喷流和反应气体喷流计算模型对典型锥-柱-裙外形的力、力矩以及侧喷干扰区域内气动加热峰值影响的研究。结果表明:无喷流条件下,反应对力和力矩的影响非常微小;开启喷流后,3种气体模型的法向力差异约4%~15%,力矩差异大于20%。冷喷流不能用于预测侧喷干扰峰值热流,反应气体喷流干扰峰值热流计算结果比无反应混合气体高13%。满足应用需求的大喷流动量比侧喷干扰的力学特性和峰值热流分布,均需开展复现高温燃气效应的实验验证。
  • 图  1  导弹侧喷干扰流动[1]

    Figure  1.  The lateral jet interaction flow[1]

    图  2  侧喷干扰轴向压力系数分布的计算与实验结果对比[1]

    Figure  2.  The pressure coefficient comparison along the x-axis locations between computation and experimentation[1]

    图  3  侧喷干扰物面流场结构油流实验图像与计算极限流线(α=0°、10°)[22]

    Figure  3.  Experimental oil flow images and computational limit streamlines for lateral jet interaction flow (α=0°, 10°)[22]

    图  4  喷口对侧物面压强与流线分布

    Figure  4.  Pressure and streamline distributions on wall opposite jet exit

    图  5  冷喷流与高温反应喷流气体模型喷流干扰流线与压强分布对比

    Figure  5.  The lateral jet interaction pressure distributions for cold gas and reacting gas

    图  6  冷喷流与高温反应喷流气体模型喷流干扰热流密度分布对比

    Figure  6.  Comparison of heating rate distribution under the lateral jet interference for cold gas and reacting gas

    图  7  高温无反应喷流与反应喷流气体模型喷流干扰压强分布对比

    Figure  7.  Comparison of pressure distribution under the lateral jet interference for high temperature nonreacting gas and reacting gas

    图  8  高温无反应与反应喷流气体模型喷流干扰热流密度分布对比

    Figure  8.  Comparison of heating rate distribution under the lateral jet inter-ference for high temperature nonreacting gas and reacting gas

    表  1  高温燃气喷流参数

    Table  1.   High temperature jet parameters

    参数 数值
    出口马赫数 2.70
    出口速度/(m·s-1) 2500
    出口压强/MPa 0.10
    驻室压强/MPa 4.00
    出口温度/K 1700
    驻室总温/K 3100
    出口燃气比热比 1.26
    出口密度/(kg·m3) 0.18
    下载: 导出CSV

    表  2  高温燃气喷流组分

    Table  2.   High temperature jet molecular species

    组分 摩尔数/(mol·kg-1)
    CO 6.268
    N2 14.947
    H2 7.516
    H2O 16.515
    CO2 1.932
    O2 0.011
    N 0.000
    NO 0.045
    H 0.476
    OH 0.333
    O 0.013
    下载: 导出CSV

    表  3  燃气反应速率参数(kf对应cm3、mol和s)

    Table  3.   Chemical reacting parameters (kf in dimensions of cm3, mol and s)

    反应方程 Cf ηf Ta/K W影响
    O2+W=2O+W 2.00×1021 -1.5 59 496 N:5  O:5
    N2+W=2N+W 7.00×1021 -1.6 113 193 N:4.286  O:4.286
    NO+W=N+O+W 5.00×1015 0 75 495 N:22  O:22  NO:22
    NO+O=O2+N 8.40×1012 0 19 449
    N2+O=NO+N 6.40×1017 -1.0 38 398
    2H+W=H2+W 6.40×1017 -1.0 0 H2:2.0  H2O:6.0
    H+OH+W=H2O+W 2.20×1022 -2.0 0 H2O:6.0
    H+O+W=OH+W 6.00×1016 -0.6 0 H2O:5.0
    OH+H2=H2O+H 2.20×1013 0 2593
    H+O2=OH+O 2.20×1014 0 8459
    O+H2=OH+H 1.80×1010 1.0 4481
    2OH=H2O+O 6.30×1012 0 549
    CO2+M=CO+O+M 3.14×1014 0 51 326
    CO2+O=CO+O2 2.10×1013 0 27 800
    OH+CO=CO2+H 2.12×1012 0 2631
    下载: 导出CSV

    表  4  不同气体模型的气动特性对比

    Table  4.   Aerodynamic characteristics comparison between different gas models

    α/(°) 开机状态 气体模型 CA Cn Cm AF Mi/(N·m)
    -4 GKI(轨控1) Cold gas 0.128 86 -0.153 48 -0.004 14 1.086 5 -552.10
    -4 GKI(轨控1) No reaction 0.130 12 -0.149 44 -0.004 73 1.065 5 -601.20
    -4 GKI(轨控1) Reaction 0.129 54 -0.155 40 -0.003 99 1.096 6 -539.10
    -4 No reaction 0.137 86 -0.137 02 0.002 18
    -4 Reaction 0.137 86 -0.137 06 0.002 21
    0 GKI(轨控1) Cold gas 0.127 74 -0.032 84 0.000 78 1.173 0 67.06
    0 GKI(轨控1) No reaction 0.129 08 -0.029 50 0.000 43 1.155 5 37.30
    0 GKI(轨控1) Reaction 0.128 54 -0.034 94 0.001 36 1.184 0 117.14
    0 No reaction 0.131 86 0 0
    0 Reaction 0.131 88 -0.000 02 0.000 01
    4 GKI(轨控1) Cold gas 0.137 80 0.093 96 0.002 12 1.227 1 376.32
    4 GKI(轨控1) No reaction 0.138 28 0.097 72 0.001 87 1.207 1 352.70
    4 GKI(轨控1) Reaction 0.138 54 0.091 58 0.003 02 1.239 7 454.92
    4 No reaction 0.137 72 0.137 02 -0.002 18
    4 Reaction 0.137 78 0.137 06 -0.002 21
    下载: 导出CSV

    表  5  高温无反应和反应喷流气体模型峰值压强与热流密度对比

    Table  5.   Peak pressure and heating rate comparison between high temperature nonreacting gas and reacting gas

    α/(°) pp/Pa qp/(kW·m-2) Reaction
    -4 5.510×104 4.150×103
    -4 5.448×104 3.730×103
    0 3.800×104 3.000×103
    0 3.758×104 2.650×103
    4 2.397×104 1.927×103
    4 2.350×104 1.750×103
    下载: 导出CSV
  • [1] Gnemmi P, Adeli R, Longo J. Computational comparisons of the interaction of a lateral jet on a supersonic generic missile[R]. AIAA 2008-6883, 2008.
    [2] Roger R P. The aerodynamics of jet thruster control for supersonic/hypersonic endo-interceptors: Lessons learned[R]. AIAA-99-0804, 1999. https://www.researchgate.net/publication/269211135_The_aerodynamics_of_jet_thruster_control_for_supersonichypersonic_endo-interceptors_-_Lessons_learned
    [3] Chamberlain R, Dang A, McClure D. Effect of exhaust chemistry on reaction jet control[R]. AIAA-99-0806, 1999. https://www.researchgate.net/publication/269211090_Effect_of_exhaust_chemistry_on_reaction_jet_control
    [4] Chamberlain R, McClure D, Dang A. CFD analysis of lateral jet interaction phenomena for the THAAD interceptor[R]. AIAA-2000-0963, 2000. https://www.researchgate.net/publication/269068007_CFD_analysis_of_lateral_jet_interaction_phenomena_for_the_THAAD_interceptor
    [5] 赵桂林, 彭辉, 胡亮, 等.超音速流动中侧向喷流干扰特性的实验研究[J].力学学报, 2004, 36(5): 577-582. doi: 10.3321/j.issn:0459-1879.2004.05.010

    Zhao G L, Peng H, Hu L, et al. Experimental investigations of lateral jet interaction in supersonic flows[J]. Acta Mechanica Sinica, 2004, 36(5): 577-582. doi: 10.3321/j.issn:0459-1879.2004.05.010
    [6] 李素循, 倪招勇.自由射流与受干扰射流[C]//全国第十二届高超声速气动力(热)会议论文集. 2003.

    Li S X, Ni Z Y. Free/disturbed jet flow[C]//Proc of the 12th Hypersonic Aerodynamic Force and Heating Conference. 2003.
    [7] 倪招勇, 李素循.横喷干扰流场压力与油流显示[C]//全国第十二届高超声速气动力(热)会议论文集. 2003.

    Ni Z Y, Li S X. Pressure distributions in lateral jet interaction flow and its oil flow visulation[C]//Proc of the 12th Hypersonic Aerodynamic Force and Heating Conference. 2003.
    [8] 赵桂林, 彭辉, 胡亮, 等.高超声速流动中侧向喷流干扰特性的实验研究[J].空气动力学学报, 2005, 23(2): 188-194. doi: 10.3969/j.issn.0258-1825.2005.02.011

    Zhao G L, Peng H, Hu L, et al. Experimental investigations of lateral jet interaction in hypersonic flows[J]. Acta Aerodyna-mica Sinica, 2005, 23(2): 188-194. doi: 10.3969/j.issn.0258-1825.2005.02.011
    [9] 徐筠, 徐翔, 王志坚, 等.多喷口喷流对侧向喷流流场影响的风洞实验研究[J].实验流体力学, 2012, 26(5): 13-16. doi: 10.3969/j.issn.1672-9897.2012.05.003

    Xu Y, Xu X, Wang Z J, et al. Experimental investigation on multi-jet interference[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(5): 13-16. doi: 10.3969/j.issn.1672-9897.2012.05.003
    [10] Stahl B, Emunds H, Gulhan A. Experimental investigation of hot and cold side jet interaction with a supersonic cross-flow[J]. Aerospace Science and Technology, 2009, 13(8): 488-496. doi: 10.1016/j.ast.2009.08.002
    [11] 王志坚, 伍贻兆, 徐翔, 等.冷/热喷流对飞行器气动特性干扰实验研究[J].南京航空航天大学学报, 2009, 41(4): 429-431. doi: 10.3969/j.issn.1005-2615.2009.04.002

    Wang Z J, Wu Y Z, Xu X, et al. Investigation of lateral jet interaction test for different media[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2009, 41(4): 429-431. doi: 10.3969/j.issn.1005-2615.2009.04.002
    [12] 徐筠, 王志坚, 徐翔.高超声速侧向喷流干扰气动特性试验研究[J].实验流体力学, 2005, 19(4): 20-24. doi: 10.3969/j.issn.1672-9897.2005.04.004

    Xu Y, Wang Z J, Xu X. Experiment research about lateral jet in hypersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(4): 20-24. doi: 10.3969/j.issn.1672-9897.2005.04.004
    [13] 刘洪山, 徐翔, 孔荣宗, 等.激波风洞侧向喷流干扰效应试验研究[J].空气动力学学报, 2005, 23(3): 294-298. doi: 10.3969/j.issn.0258-1825.2005.03.006

    Liu H S, Xu X, Kong R Z, et al. Wind tunnel test study for side jet interaction effects in shock tunnel[J]. Acta Aerodynamica Sinica, 2005, 23(3): 294-298. doi: 10.3969/j.issn.0258-1825.2005.03.006
    [14] 陈雪冬, 王发民, 唐贵明.高温燃气喷流/主流相互干扰实验研究[J].力学学报, 2012, 44(2): 230-237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201202005

    Cheng X D, Wang F M, Tang G M. The investigation of experemental technique for high temperature gas jet flow test in impulse wind tunnel[J]. Chinese journal of theoretical and applied mechancis, 2012, 44(2): 230-237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201202005
    [15] Robinson M A. Application of CFD to BMDO JI risk mitigation: External burning jet interaction[R]. AIAA-99-0803, 1999.
    [16] 徐敏.大气层内拦截弹侧向喷流控制技术研究[D].西安: 西北工业大学, 2003. http://cdmd.cnki.com.cn/article/cdmd-10699-2004022061.htm

    Xu M. Studies of lateral jet control on endoatmospheric interceptor[D]. Xi'an: Northwestern Polytechincal University, 2003. http://cdmd.cnki.com.cn/article/cdmd-10699-2004022061.htm
    [17] 杨彦广, 章起华, 刘君.高超声速主流中完全气体横向喷流干扰特性研究[J].空气动力学学报, 2005, 23(3): 299-306. doi: 10.3969/j.issn.0258-1825.2005.03.007

    Yang Y G, Zhang Q H, Liu J. Aerodynamic interaction research of perfect gas lateral jet in hypersonic external flow[J]. Acta Aerodynamica Sinica, 2005, 23(3): 299-306. doi: 10.3969/j.issn.0258-1825.2005.03.007
    [18] 刘君, 杨彦广, 徐春光.横向喷流与超声速流动干扰问题及其数值模拟研究进展[C]//第十二届全国计算流体力学会议论文集. 2004. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=5504614

    Liu J, Yang Y G, Xu C G. The progress of study on lateral jet interaction in supersonic flow and its numerical simulations[C]//Proc of the 12th Computational Fluid Dynamics Confe-rence. 2004. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=5504614
    [19] 周伟江, 马汉东, 杨云军, 等.侧向控制喷流干扰流场特性数值研究[J].空气动力学学报, 2004, 22(4): 399-403. doi: 10.3969/j.issn.0258-1825.2004.04.005

    Zhou W J, Ma H D, Yang Y J, et al. Numerical study of interactive flowfields with lateral jet[J]. Acta Aerodynamica Sinica, 2004, 22(4): 399-403. doi: 10.3969/j.issn.0258-1825.2004.04.005
    [20] 杨彦广, 刘君, 唐志共.横向喷流干扰中的真实气体效应研究[J].空气动力学学报, 2006, 24(1): 28-33. doi: 10.3969/j.issn.0258-1825.2006.01.006

    Yang Y G, Liu J, Tang Z G. A study of real gas effects on lateral jet interaction[J]. Acta Aerodynamica Sinica, 2006, 24(1): 28-33. doi: 10.3969/j.issn.0258-1825.2006.01.006
    [21] 孙得川, 杨建文, 白荣博.喷流气体性质对导弹侧向喷流流场的影响[J].空气动力学学报, 2010, 28(6): 720-723. doi: 10.3969/j.issn.0258-1825.2010.06.018

    Sun D C, Yang J W, Bai R B. The effect of gas properties on the lateral jet interaction flowfield[J]. Acta Aerodynamica Sinica, 2010, 28(6): 720-723. doi: 10.3969/j.issn.0258-1825.2010.06.018
    [22] Kovar A. Schülein E. Effect of side jets in a supersonic flow measured and calculated on a flat plate and a generic missile configuration[R]. RTO-MP-AVT 135, 2006.
    [23] 刘耀峰, 薄靖龙.侧向喷流干扰流场建立与消退过程数值模拟[J].宇航学报, 2015, 36(8): 877-884. doi: 10.3873/j.issn.1000-1328.2015.08.003

    Liu Y F, Bo J L. Numerical simulation of establishment/vanishment process of lateral jet interaction flowfield[J]. Journal of Astronautics, 2015, 36(8): 877-884. doi: 10.3873/j.issn.1000-1328.2015.08.003
    [24] DeSpirito J. Effects of turbulence model on prediction of hot-gas lateral jet interaction in a supersonic crossflow[R]. AIAA 2015-1923, 2015.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  104
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-26
  • 修回日期:  2019-07-12
  • 刊出日期:  2019-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日