留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于原子发射光谱的中低焓电弧加热器漏水故障诊断

林鑫 曾徽 彭锦龙 欧东斌 李飞 余西龙

林鑫, 曾徽, 彭锦龙, 等. 基于原子发射光谱的中低焓电弧加热器漏水故障诊断[J]. 实验流体力学, 2019, 33(5): 81-86. doi: 10.11729/syltlx20180174
引用本文: 林鑫, 曾徽, 彭锦龙, 等. 基于原子发射光谱的中低焓电弧加热器漏水故障诊断[J]. 实验流体力学, 2019, 33(5): 81-86. doi: 10.11729/syltlx20180174
Lin Xin, Zeng hui, Peng Jinlong, et al. Atomic emission spectroscopy diagnostics for leak detection of cooling water in a low-enthalpy arc heater[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 81-86. doi: 10.11729/syltlx20180174
Citation: Lin Xin, Zeng hui, Peng Jinlong, et al. Atomic emission spectroscopy diagnostics for leak detection of cooling water in a low-enthalpy arc heater[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 81-86. doi: 10.11729/syltlx20180174

基于原子发射光谱的中低焓电弧加热器漏水故障诊断

doi: 10.11729/syltlx20180174
基金项目: 

国家自然科学基金项目 11802315

详细信息
    作者简介:

    林鑫(1986-), 男, 山东青岛人, 博士, 高级工程师。研究方向:高焓流场激光光谱诊断、地面气动热技术与试验。通信地址:北京市北四环西路15号中国科学院力学研究所(100190)。E-mail:linxin_bit@163.com

    通讯作者:

    曾徽,E-mail: zenghuikeda@outlook.com

  • 中图分类号: V211.74+4

Atomic emission spectroscopy diagnostics for leak detection of cooling water in a low-enthalpy arc heater

  • 摘要: 电弧加热器试验中存在电极局部烧穿漏水导致电弧加热器严重烧损的风险,对漏水故障的快速诊断可大大提升电弧加热器的运行安全性。由于电弧加热器内高温气流的恶劣环境,漏水故障诊断技术匮乏。针对总焓范围2~12 MJ/kg的中低焓电弧加热器,提出一种基于原子发射光谱的漏水故障诊断技术。通过分析中低焓电弧加热器漏水故障条件和正常运行下高温流场的发射光谱特性,选择氧原子777.19 nm发射谱线为目标谱线,采用相对强度的处理方法,实时监测该中低焓电弧加热器是否发生漏水故障。试验获得了总焓H0分别为11.6和9.8 MJ/kg共2组工况下氧原子相对辐射强度的变化规律,结合电极烧蚀图像分析,证明该技术应用于中低焓电弧加热器漏水故障诊断具有较强的发展潜力。最后,提出该技术在单轨道-多焓值状态气动热试验条件下,每个状态均保证较高灵敏度的解决方案。
  • 图  1  FD-04电弧风洞及发射光谱测量系统布置示意图

    Figure  1.  Schematic of the experimental set-up of the FD-04 facility and the emission spectroscopy measurement system

    图  2  总焓11.6 MJ/kg下发射光谱原始数据示意图

    Figure  2.  Corresponding raw test spectra at 11.6 MJ/kg

    图  3  氧原子777.19 nm特征光谱原始数据及相对强度

    Figure  3.  Raw emission spectrum and data processing for O777.19 emission intensity determination at 11.6 MJ/kg

    图  4  总焓11.6 MJ/kg下氧原子谱线相对强度随时间的变化

    Figure  4.  Evolutions of O777.19 emission intensities at 11.6 MJ/kg

    图  5  总焓9.8 MJ/kg下氧原子谱线相对强度随时间的变化

    Figure  5.  Evolutions of O777.19 emission intensities at 9.8 MJ/kg

    图  6  下电弧加热器电极烧损照片

    Figure  6.  Photograph of damaged arc heater electrodes

    图  7  单轨道-多总焓状态下氧原子相对辐射强度测量

    Figure  7.  Relative intensity measurement of the O777.19 emission intensities under multiple total enthalpy conditions

  • [1] Grinstead J H, Porter B J, Carballo J E. Flow property measurement using laser-induced fluorescence in the NASA ames interaction heating facility[R]. AIAA-2011-1091, 2011.
    [2] Lin X, Chen L Z, Zeng H, et al. High enthalpy arc-heated plasma flow diagnostics by tunable diode laser absorption spectroscopy[C]//Proceedings of the Fourth International Symposium on Laser Interaction with Matter. 2017.
    [3] Dubreus T M, Sheeley J M, Stewart J H. Development of a mid-pressure arc-heated facility for hypersonic vehicle testing[R]. AIAA-2010-1732, 2010.
    [4] Gülhan A, Esser B, Koch U. Experimental investigation of reentry vehicle aerothermodynamic problems in arc-heated facilities[J]. Journal of Spacecraft and Rockets, 2001, 38(2):199-206. doi: 10.2514/2.3670
    [5] Smith R K, Wagner D A, Cunningham Dr J. A survey of current and future plasma arc-heated test facilities for aerospace and commercial applications[R]. AIAA-1998-146, 1998.
    [6] 欧东斌, 陈连忠, 董永晖, 等.大尺寸结构部件电弧风洞烧蚀试验技术[J].空气动力学学报, 2015, 33(5):661-666. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201505013

    Ou D B, Chen L Z, Dong Y H, et al. Ablation test technique of large scale structure component in arc-heated wind tunnel[J]. Acta Aerodynamica Sinica, 2015, 33(5):661-666. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201505013
    [7] Felderman E J, Chapman R, Jacocks J L, et al. High-pressure arc heater development and modeling-status and requirements[J]. Journal of Propulsion and Power, 1996, 12(6):1044-1052. doi: 10.2514/3.24142
    [8] Coulombe S, Meunier J L. Arc-cold cathode interactions-parametric dependence on local pressure[J]. Plasma Sources Sci Technol, 1997, 6:508-517. doi: 10.1088/0963-0252/6/4/008
    [9] Essiptchouk A M, Sharakhovsky L I, Marotta A A. Working conditions of a copper cathode with minimum erosion[J]. Plasma Sources Science and Technology, 2003, 12:501-507. doi: 10.1088/0963-0252/12/4/301
    [10] Webb B T, Sheeley J M. Investigation of the effects of shear on arc-electrode erosion using a modified arc-electrode mass loss model[R]. AIAA-2017-0217, 2017.
    [11] Essiptchouk A M, Sharakhovsky L I, Marotta A A. The effect of surface electrode temperature on cold electrode erosion behaviour[J]. Plasma Sources Science and Technology, 2007, 16:1-6. doi: 10.1088/0963-0252/16/1/001
    [12] Kim S. Development of tunable diode laser absorption sensors for a large-scale arc-heated-plasma wind tunnel[D]. California: Stanford University, 2004.
    [13] Winter M W, Prabhu D K. Radiation transport analysis of emission spectroscopic measurements in the plenum region of the NASA IHF arc jet facility[R]. AIAA-2014-2489, 2014.
    [14] Winter M W, Prabhu D K, Raiche G A, et al. Emission spectroscopic measurements with an optical probe in the NASA Ames IHF arc jet facility[R]. AIAA-2012-1016, 2012.
    [15] Nawaz A, Driver D M, Terrazas-Salinas I, et al. Surface catalysis and oxidation on stagnation point heat flux measurements in high enthalpy arc jets[R]. AIAA-2013-3138, 2013.
    [16] 林鑫, 陈连忠, 董永晖, 等.发射光谱诊断电弧加热器漏水故障的试验研究[J].实验流体力学, 2016, 30(4):14-19. http://www.syltlx.com/CN/abstract/abstract10945.shtml

    Lin X, Chen L Z, Dong Y H, et al. Experimental study on leak detection of cooling water in arc heater based on emission spectroscopy[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4):14-19. http://www.syltlx.com/CN/abstract/abstract10945.shtml
    [17] 张志成.高超声速气动热和热防护[M].北京:国防工业出版社, 2003.
  • 加载中
图(7)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  106
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-09
  • 修回日期:  2019-01-30
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日