留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于环状超声速气流引射作用的靶式气流磨研究

张兆 林俊 陶洋 郭秋亭 左金 路波

张兆, 林俊, 陶洋, 等. 基于环状超声速气流引射作用的靶式气流磨研究[J]. 实验流体力学, 2020, 34(1): 103-108. doi: 10.11729/syltlx20180200
引用本文: 张兆, 林俊, 陶洋, 等. 基于环状超声速气流引射作用的靶式气流磨研究[J]. 实验流体力学, 2020, 34(1): 103-108. doi: 10.11729/syltlx20180200
ZHANG Zhao, LIN Jun, TAO Yang, et al. Investigation on target jet mill based on the entrainment of the annular supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 103-108. doi: 10.11729/syltlx20180200
Citation: ZHANG Zhao, LIN Jun, TAO Yang, et al. Investigation on target jet mill based on the entrainment of the annular supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 103-108. doi: 10.11729/syltlx20180200

基于环状超声速气流引射作用的靶式气流磨研究

doi: 10.11729/syltlx20180200
基金项目: 

国家自然科学基金重大仪器项目 51327804

详细信息
    作者简介:

    张兆(1980-), 男, 四川资中人, 博士, 副研究员。研究方向:湍流边界层与多相流。通信地址:四川省绵阳市二环路南段6号12信箱201分箱。E-mail:zhangzhao04@tsinghua.org.cn

    通讯作者:

    路波, E-mail:lubo@cardc.cn

  • 中图分类号: V211.1;TQ209

Investigation on target jet mill based on the entrainment of the annular supersonic flow

  • 摘要: 气流磨作为生产超精细粉末的设备在工业界得到了广泛应用。通过数值模拟和试验验证,提出了一种超声速靶式气流磨。该气流磨采用环状超声速气流引射颗粒流,使其达到超声速状态并获得极大动能,以颗粒束形式维持于气流中心,准确碰撞靶头,实现超声速粉碎。对颗粒速度和运动轨迹的两相流数值模拟结果表明:在总压1.5 MPa、马赫数3.0的超声速气流引射作用下,粒径为25~1 μm的颗粒可加速至440~530 m/s,并精准地碰撞靶头。在此基础上,设计制造了超声速靶式气流磨并进行了铁粉粉碎试验和靶头侵蚀试验,结果表明:颗粒具有极大的碰撞能量,且与靶头发生了聚焦式碰撞。
  • 图  1  环状超声速靶式气流磨示意图

    Figure  1.  The schematic of the annular supersonic target jet mill

    图  2  装置中速度场的数值模拟结果

    Figure  2.  The velocity field in the jet mill by numerical simulation

    图  3  不同粒径的颗粒的轴向速度在中轴线上的加速过程

    Figure  3.  The accelerating process of the streamwise velocity of particles with different diameters along the axis

    图  4  采用DPM两相流模拟的不同粒径颗粒的运动轨迹

    Figure  4.  The motion trajectories of particles with different diameters numerically simulated by the discrete phases model

    图  5  超声速气流磨

    Figure  5.  The supersonic jet mill

    图  6  铁粉粉碎试验中靶头的侵蚀效果

    Figure  6.  The targets' erosion photographs of the iron particle size-reduction tests

    图  7  铁粉颗粒碰撞试验结果

    Figure  7.  The results of the iron particles size-reduction test

    表  1  超声速气流磨的参数

    Table  1.   The parameters of supersonic jet mill

    几何参数 热力学参数 动力学参数
    环状喷管 Athr=15.7 mm2
    Aex=66.5 mm2
    p0=1.5 MPa
    T0=300 K
    pex=40.8 kPa
    Tex=107 K
    Ma=3.0
    uex=622 m/s
    =0.055 kg/s
    加料管 A=7.07 mm2
    L=0.1 m
    patm=0.1 MPa
    Tatm=300 K
    uex=317 m/s
    =0.0013 kg/s
    加速段 L=0.4 m
    Φin=10.02 mm
    Φex=14.00 mm
    碰撞室 β=3° pout=0.1 MPa
    T0,out=300 K
    靶头 Φ=4.00 mm
    壁面 χ=0.03
    下载: 导出CSV

    表  2  超声速气流磨流场验证试验结果

    Table  2.   The validation test of the jet mill supersonic field

    p0 /MPa p/MPa Ma v/(m·s-1) Kinetic energy/(J·g-1)
    0.5 0.091 1.77 481 115
    1.0 0.082 2.29 555 154
    1.5 0.058 2.77 604 182
    2.0 0.053 3.02 623 194
    下载: 导出CSV

    表  3  铁粉的统计粒径

    Table  3.   The statistic radius of iron particles size distributions

    d10/μm d50/μm d90/μm
    Before 28.2 64.3 150.8
    After 2.6 7.8 29.9
    下载: 导出CSV
  • [1] BERTHIAUX H, DODDS J. Modelling fine grinding in a fluidized bed opposed jet mill: Part I: Batch grinding kinetics[J]. Powder Technology, 1999, 106(1-2): 78-87. doi: 10.1016/S0032-5910(99)00049-2
    [2] MIDOUX N, HOŠEK P, PAILLERES L, et al. Micronization of pharmaceutical substances in a spiral jet mill[J]. Powder Technology, 1999, 104(2): 113-120. doi: 10.1016/S0032-5910(99)00052-2
    [3] HIROAKI M, KO H, HIDETO Y. Powder technology handbook[M]. 3rd ed. Boca Raton: CRC Press, 2006.
    [4] TASIRIN S M, GELDART D. Experimental investigation on fluidized bed jet grinding[J]. Powder Technology, 1999, 105(1-3): 337-341. doi: 10.1016/S0032-5910(99)00156-4
    [5] NAKACH M, AUTHELIN J R, CHAMAYOU A, et al. Comparison of various milling technologies for grinding pharmaceutical powders[J]. International Journal of Mineral Processing, 2004, 74(S): S173-S181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=80f601f866356b302780bebdf0ba9d85
    [6] CHAMAYOU A, DODDS J A. Air jet milling[M]//Salman A D, Ghadiri M, Hounslow M J. Handbook of Powder Technology: vol 12. Amsterdam: Elsevier, 2007: 421-435.
    [7] GHAMBARI M, SHAIBANI M E, ESHRAGHI N. Produc-tion of grey cast iron powder via target jet milling[J]. Powder Technology, 2012, 221: 318-324. doi: 10.1016/j.powtec.2012.01.020
    [8] LEVY A, KALMAN H. Numerical study of particle motion in jet milling[J]. Particulate Science and Technology, 2007, 25(2): 197-204. doi: 10.1080/02726350701257618
    [9] RAJESWARI M S R, AZIZLI K A M, HASHIM S F S. CFD simulation and experimental analysis of flow dynamics and grinding performance of opposed fluidized bed air jet mill[J]. International Journal of Mineral Processing, 2011, 98(1-2): 94-105. doi: 10.1016/j.minpro.2010.10.012
    [10] RODNIANSKI V, KRAKAUER N, DARWESH K, et al. Aerodynamic classification in a spiral jet mill[J]. Powder Technology, 2013, 243: 110-119. doi: 10.1016/j.powtec.2013.03.018
    [11] ESKIN D, VOROPAYEV S, VASILKOV O. Simulation of jet milling[J]. Powder Technology, 1999, 105(1-3): 257-265. doi: 10.1016/S0032-5910(99)00146-1
    [12] DOGBE S, GHADIRI M, HASSANPOUR A, et al. Fluid-particle energy transfer in spiral jet mill[J]. Powders and Grains, 2017, 140: 09040. https://www.researchgate.net/publication/318070564_Fluid-particle_energy_transfer_in_spiral_jet_milling
    [13] WHITE F M. Fluid mechanics[M]. 4th ed. New York: McGraw-Hill Press, 2005.
    [14] SAFFMAN P G. The lift on a small sphere in a slow shear flow[J]. Journal of Fluid Mechanics, 1965, 22(2): 385-400. doi: 10.1017/S0022112065000824
    [15] WU W J, GIESE R F J, VAN OSS C J. Change in surface properties of solids caused by grinding[J]. Powder Technology, 1996, 89(2): 129-132. doi: 10.1016/S0032-5910(96)03158-0
    [16] XIAO Z L, CHEN Q Y, YIN Z L, et al. Calorimetric investigation of mechanically activated storage energy mechanism of sphalerite and pyrite[J]. Thermochimica Acta, 2005, 436(1-2): 10-14. doi: 10.1016/j.tca.2005.06.042
    [17] CROWE C T. Review-numerical models for dilute gas-particle flows[J]. Journal of Fluids Engineering, 1982, 104(3): 297-303. doi: 10.1115/1.3241835
    [18] ZHOU L X. Theory and numerical modeling of turbulent gas-particles flows and combustion[M]. Beijing: Science press and Florida: CRC press, 1993.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  112
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-21
  • 修回日期:  2019-05-06
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日