留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ANSYS在压电天平设计中的应用

赵荣娟 黄军 刘施然 吕治国 李国志

赵荣娟, 黄军, 刘施然, 等. ANSYS在压电天平设计中的应用[J]. 实验流体力学, 2020, 34(1): 96-102. doi: 10.11729/syltlx20190005
引用本文: 赵荣娟, 黄军, 刘施然, 等. ANSYS在压电天平设计中的应用[J]. 实验流体力学, 2020, 34(1): 96-102. doi: 10.11729/syltlx20190005
ZHAO Rongjuan, HUANG Jun, LIU Shiran, et al. Application of ANSYS in piezoelectric balance design[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 96-102. doi: 10.11729/syltlx20190005
Citation: ZHAO Rongjuan, HUANG Jun, LIU Shiran, et al. Application of ANSYS in piezoelectric balance design[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 96-102. doi: 10.11729/syltlx20190005

ANSYS在压电天平设计中的应用

doi: 10.11729/syltlx20190005
详细信息
    作者简介:

    赵荣娟(1981-), 女, 河南新郑人, 硕士, 工程师。研究方向:高超声速气动力试验技术。通信地址:四川省绵阳市二环路南段6号(621000)。E-mail:zrj04@126.com

    通讯作者:

    赵荣娟, E-mail:zrj04@126.com

  • 中图分类号: V411.7

Application of ANSYS in piezoelectric balance design

  • 摘要: 利用ANSYS力电耦合的有限元分析方法,对一台三分量压电天平的性能进行评估。主要进行了静力、模态和瞬态响应特性分析,静力分析的目的是获得天平输出与施加载荷之间的关系,评估压电天平各分量的主灵敏度系数和分量间干扰灵敏度系数;模态分析的主要目的是获得压电天平的各阶振动频率和振型,用于评估天平的频率响应特性;瞬态响应特性分析主要用于评估天平在瞬态载荷下的响应特性,评估加速度计惯性补偿的有效性。ANSYS分析结果表明:压电天平的各分量主灵敏度较高,具有较好的分量间抗干扰能力,设计的天平频响较高,加速度计实现了对天平输出信号中惯性振动信号的补偿,能够满足激波风洞测力试验的需求。天平校准和风洞试验结果表明:天平的实际性能与有限元评估结果一致。
  • 图  1  压电天平的有限元模型

    Figure  1.  Finite element model

    图  2  压电天平前6阶振型

    Figure  2.  The first six modal shapes of piezoelectric balance

    图  3  各分量输出电压随加载载荷的变化

    Figure  3.  The balance output voltage with different axial force loads

    图  4  动力学分析加载过程

    Figure  4.  Load process in transient analysis

    图  5  法向力输出补偿结果

    Figure  5.  The compensation results of normal force output

    图  6  法向力试验输出信号

    Figure  6.  The normal force output in shock tunnel experiment

    表  1  材料参数表

    Table  1.   Material parameters

    Parameter 00Ni18Co8Mo5TiAl PZT-5
    c11c22/GPa - 115.65
    c12/GPa - 64.89
    c13c23/GPa - 62.29
    c33/GPa - 92.98
    c44c55/GPa - 17.86
    c66/GPa - 17.86
    E/GPa 207 -
    ρ/(kg·m-3) 7850 8640
    μ 0.3 -
    ε11ε22/(nF·m-1) - 8.93
    ε33/(nF·m-1) - 6.92
    e13e23/(C·m-2) - -12.31
    e33/(C·m-2) - 20.76
    e52e61/(C·m-2) - 17.04
    下载: 导出CSV

    表  2  轴向力加载时各分量的输出电压

    Table  2.   Balance output voltage with different axial force loads

    Axial force/N VA/V VN/V VMz/V
    10 -0.204 5.00×10-5 1.00×10-4
    100 -2.04 5.00×10-4 1.00×10-3
    200 -4.08 1.00×10-3 2.10×10-3
    350 -7.13 1.70×10-3 3.70×10-3
    500 -10.20 2.50×10-3 5.30×10-3
    Sensitivity -2.04×10-2 4.96×10-6 1.07×10-5
    下载: 导出CSV

    表  3  综合加载时天平各分量的输出电压

    Table  3.   Balance output voltage with composite load

    Load mode VA/V VN/V VMz/V
    Axial force -7.13 1.70×10-3 3.70×10-3
    Normal force -1.00×10-4 9.47 -0.913
    Pitching moment -2.70×10-3 -1.40×10-3 5.10
    Sum above -7.14 9.47 4.19
    Composite load -7.14 9.47 4.19
    下载: 导出CSV

    表  4  天平灵敏度评估结果

    Table  4.   Simulation results of the balance sensitivity

    Component VA/mV VN/mV VMz/mV
    Axial force -14.10 3.361×10-3 7.315×10-3
    Normal force -4.152×10-4 43.69 -4.211
    Pitching moment -1.799 -0.9688 3.529×103
    下载: 导出CSV

    表  5  天平校准结果

    Table  5.   Balance calibration results

    Component VA/mV VN/mV VMz/mV
    Axial force -12.46 0.5898 1.089
    Normal force -5.816×10-2 38.37 3.397
    Pitching moment -50.23 -1.349 3.11×103
    下载: 导出CSV
  • [1] 贺德馨.风洞天平[M].北京: 国防工业出版社, 2001.
    [2] 唐志共.高超声速气动力试验[M].北京: 国防工业出版社, 2004.
    [3] DURYEA G R, MARTIN J F. An improved piezoelectric balance for aerodynamic force measurements[J]. IEEE Transactions and Aerospace and Electronic Systems, 1968, AES-4(3): 351-359. https://ieeexplore.ieee.org/document/5408988
    [4] MARINEAU E C. Force measurements in hypervelocity flows with an acceleration compensated piezoelelctric balance[J]. Journal of Spacecraft and Rockets, 2011, 48(4): 697-700. doi: 10.2514/1.A32047
    [5] SMOLINSKI G. Proof of concept for testing acceleration compensation force balance techniques in short duration flows with a CEV capsule[R]. AIAA-2007-1010, 2007.
    [6] 孟宝清, 韩桂来, 姜宗林.结构振动对大型激波风洞气动力测量的干扰[J].力学学报, 2016, 48(1): 102-110. http://d.old.wanfangdata.com.cn/Periodical/lxxb201601010

    MENG B Q, HAN G L, JIANG Z L. Theoretical investigation on aerodynamic force measurement interfered by structural vibrations in large shock tunnel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 102-110. http://d.old.wanfangdata.com.cn/Periodical/lxxb201601010
    [7] MARNEAU E C, MACLEAN M, MUNDY E P, et al. Force measurements in hypervelocity flows with an acceleration compensated strain gauge balance[J]. Journal of Spacecraft and Rockets, 2012, 49(3): 474-482. doi: 10.2514/1.A32041
    [8] 吕金洲, 张小庆, 陈光雄, 等.基于惯性补偿的脉冲风洞测力天平瞬态研究[J].振动与冲击, 2018, 37(2): 216-222. http://d.old.wanfangdata.com.cn/Periodical/zdycj201802032

    LYU J Z, ZHANG X Q, CHEN G X, et al. Transient simulation for dynamic output of force measuring balance in an impulse combustion wind tunnel based on inertia compensation[J]. Journal of Vibration and Shock, 2018, 37(2): 216-222. http://d.old.wanfangdata.com.cn/Periodical/zdycj201802032
    [9] 谢龙汉, 刘新让, 刘文超. ANSYS结构及动力学分析[M].北京: 电子工业出版社, 2012.
    [10] 黄亮.压电式四维力传感器的有限元仿真分析和设计[D].重庆: 重庆大学, 2008.

    HUANG L. Finite element simulation analysis and design of a four-axis piezoelectric force sensor[D]. Chongqing: Chongqing University, 2008.
    [11] 郑芳, 武家騊. ANSYS在风洞天平设计中的应用[J].流体力学实验与测量, 2004, 18(1): 80-83. doi: 10.3969/j.issn.1672-9897.2004.01.018

    ZHENG F, WU J T. Application of ANSYS method to the design of wind tunnel balance[J]. Experiments and Measure-ments in Fluid Mechanics, 2004, 18(1): 80-83. doi: 10.3969/j.issn.1672-9897.2004.01.018
    [12] 张世雄.杆式应变天平结构分析与优化设计[D].北京: 北京理工大学, 2016.

    ZHANG S X. Structure analysis and optimization design for sting strain balance[D]. Beijing: Beijing Institute of Technology, 2016.
    [13] WANG Y H, LIU W, XIE B, et al. Research on a micro-rolling-moment six-component strain gauge balance of composite structure[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 76-79, 98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ltlxsyycl201503012
    [14] 史玉杰, 黄勇, 田正波.小展弦比飞翼布局高速标模测力天平研制[J].实验流体力学, 2015, 29(5): 50-54. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10874.shtml

    SHI Y J, HUANG Y, TIAN Z B. Strain gauge balance development for force test on small aspect ratio flying wing high speed standard model[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(5): 50-54. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10874.shtml
    [15] 胡国风.应变天平矩形截面元件扭转应变计算准度分析[J].实验流体力学, 2012, 26(6): 75-78. doi: 10.3969/j.issn.1672-9897.2012.06.016

    HU G F. Accuracy analysis of the torsion strain calculation of a balance with rectangular cross-section[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6): 75-78. doi: 10.3969/j.issn.1672-9897.2012.06.016
    [16] 汪运鹏, 刘云峰, 苑朝凯, 等.长试验时间激波风洞测力技术研究[J].力学学报, 2016, 48(3): 545-556. http://d.old.wanfangdata.com.cn/Periodical/lxxb201603004

    WANG Y P, LIU Y F, YUAN C K, et al. Study on force measurement in long-test duration shock tunnel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 545-556. http://d.old.wanfangdata.com.cn/Periodical/lxxb201603004
    [17] LYU H Y, QIN L, LIU J. Principle research on a single mass six-degree-of-freedom accelerometer with six groups of piezoelectric sensing elements[J]. IEEE Sensors Journal, 2015, 15(6): 3301-3310. doi: 10.1109/JSEN.2014.2387829
    [18] 汪泽浩.一种基于压电陶瓷晶体的振动能量回收装置的研究[D].杭州: 浙江大学, 2015.

    WANG Z H. A study on vibration energy recovery device based on piezoelectric ceramic crystal[D]. Hangzhou: Zhejiang University, 2015.
    [19] OOI B L, GILBERT J M, AZIZ A R A, et al. Analytical and finite-element study of optimal strain distribution in various beam shapes for energy harvesting applications[J]. Acta Mechanica Sinica, 2016, 32(4): 670-683. doi: 10.1007/s10409-016-0557-3
    [20] 刘月.周期性强冲击振动环境下d15模式压电俘能器研究[D].大连: 大连理工大学, 2017.

    LIU Y. Study of d15 mode piezoelectric energy harvesting under periodic strong impact vibration[D]. Dalian: Dalian university of technology, 2017.
    [21] ZHU X J, ZHAO M, GAO Z Y, et al. Analysis of active vibration control for piezoelectric intelligent structures by ANSYS and MATLAB[C]//Proc of the 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). 2010.
    [22] 王飞.五维力杆式压电天平的研制[D].大连: 大连理工大学, 2015.

    WANG F. Development of five components stick-piezoelectric wind tunnel balance[D]. Dalian: Dalian University of Techno-logy, 2015.
    [23] 戴星, 汤世友.基于压电效应的三分量动态天平的研制[J].河南科技, 2014(1): 60-61. http://d.old.wanfangdata.com.cn/Periodical/hnkj201401050

    DAI X, TANG S Y. The development of three component dynamic balance based on piezoelectric effect[J]. Journal of Henan Science and Technology, 2014(1): 60-61. http://d.old.wanfangdata.com.cn/Periodical/hnkj201401050
    [24] 李盼, 杨睿, 任宗金, 等.全动舵面载荷测量的压电天平设计与误差分析[J].哈尔滨工业大学学报, 2018, 50(1): 181-185. http://d.old.wanfangdata.com.cn/Periodical/hebgydxxb201801027

    LI P, YANG R, REN Z J, et al. Design and error analysis of a piezoelectric balance for the measurement of aerodynamic loads on all-movable rudder[J]. Journal of Harbin Institute of Technology, 2018, 50(1): 181-185. http://d.old.wanfangdata.com.cn/Periodical/hebgydxxb201801027
    [25] 赵荣娟, 吕治国, 黄军, 等.基于压电敏感元件的摩阻天平设计[J].空气动力学学报, 2018, 36(4): 555-560. doi: 10.7638/kqdlxxb-2016.0112

    ZHAO R J, LYU Z G, HUANG J, et al. Design of skin friction balance based on piezoelectric ceramics[J]. Acta Aerodynamica Sinica, 2018, 36(4): 555-560. doi: 10.7638/kqdlxxb-2016.0112
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  117
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-11
  • 修回日期:  2019-05-14
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日