留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SOFC多孔电极有效导热系数的实验和模型研究

黄志鹏 赵梦甜 杨希刚 王玉璋

黄志鹏, 赵梦甜, 杨希刚, 等. SOFC多孔电极有效导热系数的实验和模型研究[J]. 实验流体力学, 2019, 33(6): 1-6. doi: 10.11729/syltlx20190018
引用本文: 黄志鹏, 赵梦甜, 杨希刚, 等. SOFC多孔电极有效导热系数的实验和模型研究[J]. 实验流体力学, 2019, 33(6): 1-6. doi: 10.11729/syltlx20190018
Huang Zhipeng, Zhao Mengtian, Yang Xigang, et al. Experimental and theoretical model study on effective thermal conductivity of SOFC porous electrode[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 1-6. doi: 10.11729/syltlx20190018
Citation: Huang Zhipeng, Zhao Mengtian, Yang Xigang, et al. Experimental and theoretical model study on effective thermal conductivity of SOFC porous electrode[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 1-6. doi: 10.11729/syltlx20190018

SOFC多孔电极有效导热系数的实验和模型研究

doi: 10.11729/syltlx20190018
基金项目: 教育部留学回国人员科研启动基金
详细信息
    作者简介:

    黄志鹏(1995-), 男, 湖南邵阳人, 硕士研究生。研究方向:燃料电池先进动力循环、多尺度流动传热。通信地址:上海市闵行区东川路800号机动学院C楼(200240)。E-mail:huangzhipeng@sjtu.edu.cn

    通讯作者:

    王玉璋, E-mail:yuzhangwang@sjtu.edu.cn

  • 中图分类号: TM911.4

Experimental and theoretical model study on effective thermal conductivity of SOFC porous electrode

  • 摘要: 固体氧化物燃料电池(SOFC)内部流动传热和化学反应复杂,容易产生热不平衡区。获取高精度的多孔电极有效导热系数对于建立多物理场耦合数值分析模型和电池热管理具有重要的意义。基于稳态法设计并搭建了多孔材料有效导热系统实验平台和测量系统,在372.1~932.4 K温度范围内详细测量了多孔电极实验样件温度分布,通过多孔材料内传热理论分析,基于现有EMT和ME1数学模型,利用比例因子t构造了温度修正的SOFC多孔电极综合有效导热系数的计算模型。同时通过对比孔隙率为0.2349~0.4178的3个实验样件表面温度的计算值和实验测量值,验证了该有效导热系数模型的有效性和高精度。
  • 图  1  实验系统示意图

    Figure  1.  Schematic of experimental system

    图  2  实验部分示意图

    Figure  2.  Schematic diagram of the experimental section

    图  3  各模型的有效导热系数计算值

    Figure  3.  Effective thermal conductivity for each model

    图  4  实验结果与理论模型的比较

    Figure  4.  Comparison of experimental results with theoretical models

    图  5  最佳比例因子随加热温度的变化情况

    Figure  5.  The optimum scale factor varies with heating temperature

    图  6  公式计算值与实验值的对比

    Figure  6.  Comparison between formula calculated values and experimental values

    表  1  不同加热温度下实验测量值

    Table  1.   Experimental measurements at different heating temperatures

    工况 电压/V 电流/A 加热器温度/K 气体温度/K 外壁/K 多孔电极测点温度/K
    TheatL TheatH Tgasin Tgasout Tsurf 测点7 测点17 测点23 测点37 测点45 测点52
    1 40 0.46 363.5 372.1 293.5 295.8 294.3 335.4 339.4 343.8 350.8 353.8 354.7
    2 80 0.92 578.4 612.4 295.7 312.6 297.3 479.1 504.4 516.4 551.0 560.3 574.8
    3 120 1.34 810.8 861.2 298.9 345.7 297.3 670.3 738.8 759.0 814.4 828.6 834.3
    4 160 1.78 877.7 932.4 300.9 360.4 305.3 706.7 808.1 845.0 887.8 890.8 906.1
    注:TheatL为近气体入口端加热器温度, TheatH为近气体出口端加热器温度
    下载: 导出CSV

    表  2  不同加热温度下各比例因子对应的标准差

    Table  2.   Standard deviation corresponding to each scale factor at different heating temperatures

    T/K 比例因子t
    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
    372.1 2.33031 2.32619 2.32447 2.32399 2.32667 2.33107 2.33726 2.34496 2.35466
    612.4 6.75532 6.69697 6.65073 6.61661 6.59789 6.59404 6.59349 6.60450 6.63037
    861.2 6.94167 6.32564 5.80576 5.40128 5.09935 4.94486 4.93141 5.05898 5.30833
    932.4 8.30279 7.39442 6.54582 5.76892 5.12351 4.57371 4.20319 4.04781 4.10757
    下载: 导出CSV

    表  3  不同孔隙率下实验测量值

    Table  3.   Experimental measurements at different porosity

    工况 孔隙率εp 加热器温度/K 气体温度/K 外壁/K 多孔电极测点温度/K
    TheatL TheatH Tgasin Tgasout Tsurf 测点7 测点17 测点23 测点37 测点45 测点52
    1 0.2349 602.1 635.3 295.7 322.2 306.4 445.5 505.6 532.6 548.1 557.0 565.3
    2 0.3471 578.4 612.4 295.7 312.6 297.3 479.1 504.4 516.4 551.0 560.3 574.8
    3 0.4178 611.9 642.2 315.5 345.6 329.7 511.3 566.0 590.5 603.1 604.5 616.6
    注:TheatL为近气体入口端加热器温度, TheatH为近气体出口端加热器温度
    下载: 导出CSV
  • [1] Gupta N, Yadav G D. Solid oxide fuel cell: a review[J]. International Research Journal of Engineering and Technology, 2016, 3(6): 1006-1011. http://d.old.wanfangdata.com.cn/Periodical/xyjsclygc200508001
    [2] Koteswararao P, Suresh M B, Wanic B N, et al. Review on ceramics for solid oxide fuel cells[J]. International Journal of Scientific Research in Science, Engineering and Technology, 2017, 3(8): 342-346.
    [3] Zeng S M, Xu M, Parbey J, et al. Thermal stress analysis of a planar anode-supported solid oxide fuel cell: Effects of anode porosity[J]. International Journal of Hydrogen Energy, 2017, 42(31): 20239-20248. doi: 10.1016/j.ijhydene.2017.05.189
    [4] Barelli L, Bidini G, Ottaviano A. Solid oxide fuel cell modeling: Electrochemical performance and thermal management during load following operation[J]. Energy, 2016, 115: 107-119. doi: 10.1016/j.energy.2016.08.107
    [5] Boaro M, Aricò A S. Advances in medium and high temperature solid oxide fuel cell technology[M]. Cham, Switzerland: Springer, 2017.
    [6] Rao Z H, Wang Q C, Huang C L. Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system[J]. Applied Energy, 2016, 164: 659-669. doi: 10.1016/j.apenergy.2015.12.021
    [7] 姚凯, 郑会保, 刘运传, 等.导热系数测试方法概述[J].理化检验(物理分册), 2018, 54(10): 741-747. http://d.old.wanfangdata.com.cn/Periodical/lhjy-wl201810007

    Yao K, Zheng H B, Liu Y C, et al. Survey of measurement methods for thermal conductivity[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2018, 54(10): 741-747. http://d.old.wanfangdata.com.cn/Periodical/lhjy-wl201810007
    [8] 刘世杰, 吴鹏章, 王梦蛟, 等.一种基于稳态热流法的导热系数测定仪器及方法[J].橡塑技术与装备, 2017, 43(17): 45-47. http://d.old.wanfangdata.com.cn/Periodical/xsjsyzb201717010

    Liu S J, Wu P Z, Wang M J, et al. An instrument and method for measuring the thermal conductivity based on steady-state heat flow method[J]. China Rubber/Plastics Technology and Equipment, 2017, 43(17): 45-47. http://d.old.wanfangdata.com.cn/Periodical/xsjsyzb201717010
    [9] 任佳, 蔡静.导热系数测量方法及应用综述[J].计测技术, 2018, 38(S1): 46-49. http://d.old.wanfangdata.com.cn/Periodical/hkjcjs2018z1014

    Ren J, Cai J. Summary of measurement methods and applications of thermal conductivity[J]. Metrology & Measure-ment Technology, 2018, 38(S1): 46-49. http://d.old.wanfangdata.com.cn/Periodical/hkjcjs2018z1014
    [10] Radovic M, Lara-Curzio E, Trejo R M, et al. Thermophysical properties of YSZ and Ni-YSZ as a function of temperature and porosity[J]. Advances in Solid Oxide Fuel Cells Ⅱ: Ceramic Engineering and Science Proceedings, 2009, 27(4): 79-85. http://cn.bing.com/academic/profile?id=8bebe7971bd1bf149388c9bc1e7ce6f1&encoded=0&v=paper_preview&mkt=zh-cn
    [11] 付文强, 高辉, 薛征欣, 等.多孔材料有效导热系数的实验和模型研究[J].中国测试, 2016, 42(5): 124-130. http://d.old.wanfangdata.com.cn/Periodical/zgcsjs201605026

    Fu W Q, Gao H, Xue Z X, et al. Experimental measurement and calculation of thermal conductivity of porous material[J]. China Measurement & Test, 2016, 42(5): 124-130. http://d.old.wanfangdata.com.cn/Periodical/zgcsjs201605026
    [12] 王刚, 魏高升, 黄平瑞, 等.改进的新有效介质理论模型分析多孔绝热材料的有效导热系数[J].中国电机工程学报, 2016, 36(9): 2465-2469. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201609019

    Wang G, Wei G S, Huang P R, et al. Effective thermal conductivity analysis on porous thermal insulation material by the improved novel effective medium theory model[J]. Proceedings of the CSEE, 2016, 36(9): 2465-2469. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201609019
    [13] 付俊鹏, 蔡九菊.基于谢尔宾斯基地毯模型对烧结矿散料有效导热系数的研究[J].冶金能源, 2017, 36: 59-61. http://www.cqvip.com/QK/95660X/2017A01/673049683.html

    Fu J P, Cai J J. Research of the effective thermal conductivity of sinter packed based on sierpinski carpet[J]. Energy for Metallurgical Industry, 2017, 36: 59-61. http://www.cqvip.com/QK/95660X/2017A01/673049683.html
    [14] 王世芳, 吴涛.多孔介质有效热导率的一种新模型[J].工程热物理学报, 2016, 37(12): 2626-2630. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201612022

    Wang S F, Wu T. A new fractal model for the effective thermal conductivity of porous media[J]. Journal of Engineering Thermophysics, 2016, 37(12): 2626-2630. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201612022
    [15] Zhai S P, Zhang P, Shi B, et al. Effective thermal conductivity of polymer composites: Theoretical models and simulation models[J]. International Journal of Heat and Mass Transfer, 2018, 117: 358-374. doi: 10.1016/j.ijheatmasstransfer.2017.09.067
    [16] Carson J K, Lovatt S J, Tanner D J, et al. Predicting the effective thermal conductivity of unfrozen, porous foods[J]. Journal of Food Engineering, 2006, 75(3): 297-307. doi: 10.1016/j.jfoodeng.2005.04.021
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  81
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-21
  • 修回日期:  2019-03-22
  • 刊出日期:  2019-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日