留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2中速度5~7 km/s自由飞圆球流场参数的实验测量和数值模拟

廖东骏 柳森 黄洁 简和祥 谢爱民 王宗浩

廖东骏, 柳森, 黄洁, 等. CO2中速度5~7 km/s自由飞圆球流场参数的实验测量和数值模拟[J]. 实验流体力学, 2020, 34(5): 29-35. doi: 10.11729/syltlx20190055
引用本文: 廖东骏, 柳森, 黄洁, 等. CO2中速度5~7 km/s自由飞圆球流场参数的实验测量和数值模拟[J]. 实验流体力学, 2020, 34(5): 29-35. doi: 10.11729/syltlx20190055
LIAO Dongjun, LIU Sen, HUANG Jie, et al. Measurement and numerical simulation of flow field parameters of free flight spheres with flight velocity from 5 to 7 km/s in CO2[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 29-35. doi: 10.11729/syltlx20190055
Citation: LIAO Dongjun, LIU Sen, HUANG Jie, et al. Measurement and numerical simulation of flow field parameters of free flight spheres with flight velocity from 5 to 7 km/s in CO2[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 29-35. doi: 10.11729/syltlx20190055

CO2中速度5~7 km/s自由飞圆球流场参数的实验测量和数值模拟

doi: 10.11729/syltlx20190055
详细信息
    作者简介:

    廖东骏(1990-), 男, 四川绵阳人, 助理研究员。研究方向:高超声速空气动力学。通信地址:四川省绵阳市二环路南段6号15信箱(621000)。E-mail:tigers717@126.com

    通讯作者:

    廖东骏  E-mail:tigers717@126.com

  • 中图分类号: O354.4

Measurement and numerical simulation of flow field parameters of free flight spheres with flight velocity from 5 to 7 km/s in CO2

  • 摘要: 为研究火星进入条件下的非平衡流动特性,在中国空气动力研究与发展中心超高速空气动力研究所弹道靶上测量了CO2中针对火星探测器进入速度范围5~7 km/s条件下的自由飞圆球的激波脱体距离。实验数据基于阴影法测量,并将其与数值计算结果进行对比,进一步计算了实验流场温度和组分分布等流场参数。一般认为激波脱体距离随来流速度升高而呈单调减小趋势,但研究结果表明:实验状态下,圆球飞行速度约5.5~7.0 km/s的范围内,圆球激波脱体距离随飞行速度升高而增大;采用Park的双温度非平衡模型和5组分6反应的CO2化学反应动力模型可基本再现本文自由飞圆球激波脱体距离的实验测量数据;根据计算结果推测,本实验状态下自由飞圆球波后靠近激波一侧区域的流场主要处于热化学非平衡状态;当来流速度在约5.5~7.0 km/s的范围内时,流场组分CO开始发生显著离解,是引起圆球激波脱体距离在该速度范围内随速度升高反而增大的可能原因。
  • 图  1  实验设备和测试系统示意图

    Figure  1.  Schematic of the arrangement of the test facility and measurement systems

    图  2  实验模型

    Figure  2.  Test model

    图  3  实验0021阴影图像

    Figure  3.  Shadowgraph of test 0021

    图  4  实验0025阴影图像

    Figure  4.  Shadowgraph of test 0025

    图  5  激波脱体距离实验测量数据随飞行速度变化

    Figure  5.  Dependence of measured shock standoff distances on the flight velocities

    图  6  计算网格示意图

    Figure  6.  Schematic of the computational grid

    图  7  自由飞圆球激波脱体距离的实验测量数据和数值计算结果对比

    Figure  7.  Comparison between the measured and calculated shock standoff distances of the free flight spheres

    图  8  驻点线平动温度T和振动温度Tvib分布数值计算结果对比

    Figure  8.  Comparsion of the calcultared translational and vibrational temperature profiles along the stagnation line

    图  9  驻点线组分摩尔质量分数分布数值计算结果对比

    Figure  9.  Comparsion of the calcultared species mole fraction profiles along the stagnation line

    图  10  实验0021和实验0025状态下驻点线密度分布数值计算结果对比

    Figure  10.  Comparison between the calculated density profiles of test 0021 and test 0025

    表  1  激波脱体距离实验测量数据和对应实验状态

    Table  1.   Measured shock standoff distances and corresponding test conditions of present test

    编号 模型直径D/mm 靶室温度T0/K 靶室压力p0/kPa 双尺度参数ρR/(kg·m-2) 模型速度V/(km·s-1) 马赫数Ma δ/R测量值 测量误差
    0018 6 282.25 10.81 6.08×10-4 5.473 20.8 0.0467 ±4.53%
    0021 6 283.15 11.01 6.17×10-4 5.715 21.7 0.0462 ±4.98%
    0022 6 282.55 10.99 6.17×10-4 6.603 25.1 0.0538 ±5.20%
    0023 6 282.55 10.99 6.17×10-4 6.781 25.7 0.0515 ±5.56%
    0024 6 284.65 11.07 6.17×10-4 4.562 17.3 0.0497 ±4.62%
    0025 6 285.15 11.08 6.17×10-4 7.314 27.6 0.0520 ±6.21%
    下载: 导出CSV

    表  2  双温度模型和5组分6反应模型计算的激波脱体距离与实验数据的偏差

    Table  2.   Comparison between the measured and calculated shock standoff distances using the two temperature model and 5 species and 6 reactions model

    编号 δ/R测量值 测量误差 δ/R计算值 计算值相对测量值偏差
    0018 0.0467 ±4.53% 0.0470 0.64%
    0021 0.0462 ±4.98% 0.0474 2.60%
    0022 0.0538 ±5.20% 0.0547 1.67%
    0023 0.0515 ±5.56% 0.0547 6.21%
    0024 0.0497 ±4.62% 0.0500 0.60%
    0025 0.0520 ±6.21% 0.0557 7.12%
    下载: 导出CSV
  • [1] KUTTY P, KARLGAARD C D. Mars science laboratory aerodatabase trajectory reconstruction and uncertainty assess-ment[C]//Proc of the AIAA Atmospheric Flight Mechanics Conference. 2014.
    [2] MAGIN T, CHAZOT O. Review of the VKI research on nonequilibrium phenomena in hypersonics[R]. AIAA 2012-0725, 2012.
    [3] PARK C. Assessment of a two-temperature kinetic model for dissociating and weakly ionizing nitrogen[J]. Journal of Thermo-physics and Heat Transfer, 1988, 2(1):8-16. doi: 10.2514/3.55
    [4] PARK C, HOWE J T, JAFFE R L, et al. Review of chemical-kinetic problems of future NASA missions, Ⅱ:Mars entries[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(1):9-23. http://www.onacademic.com/detail/journal_1000035806006310_8873.html
    [5] KAY R D, NETTERFIELD M P. Thermochemical non-equilibrium computations for a Mars entry vehicle[R]. AIAA 93-2841, 1993.[C]//Proc of the 28th Thermophysics Conference. 1993.
    [6] SUZUKI K, ABE T. Thermochemical nonequilibrium viscous shock-layer analysis for a Mars aerocapture vehicle[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(4):773-780. doi: 10.2514/3.611
    [7] NOEDING H P, SCHRAMM J M. Numerical rebuilding of shock tube experiments in CO2 flow under conditions relevant for Mars entry probes[C]//Proc of the 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 2014.
    [8] HORNUNG H, WEN C Y. Nonequilibrium dissociating flow over spheres[C]//Proc of the 33rd Aerospace Sciences Meeting and Exhibit. 1995.
    [9] SHARMA M, AUSTIN J M, GLUMAC N G, et al. Expansion tube investigation of shock stand-off distances in high-enthalpy CO2 flow over blunt bodies[R]. AIAA 2010-1566, 2010.
    [10] MACLEAN M, HOLDEN M. Catalytic effects on heat transfer measurements for aerothermal studies with CO2[R]. AIAA 2006-182, 2006.
    [11] MACLEAN M, DUFRENE A, HOLDEN M. Spherical capsule heating in high enthalpy carbon dioxide in LENS-XX expansion tunnel[R]. AIAA 2013-0906, 2013.
    [12] SHARMA M, SWANTEK A B, FLAHERTY W, et al. Experi-mental and numerical investigations of hypervelocity carbon dioxide flow over blunt bodies[J]. Journal of Thermophysics and Heat Transfer, 2010, 24(4):673-683. doi: 10.2514/1.49386
    [13] MACLEAN M, HOLDEN M. Numerical assessment of data in catalytic and transitional flows for Martian entry[R]. AIAA 2006-2946, 2006.
    [14] MATTHEW G L, AUSTIN J M. Assessment of reflected shock tunnels for Mars entry vehicle ground testing[C]//Proc of the 2018 AIAA Aerospace Sciences Meeting. 2018.
    [15] 柳森, 王宗浩, 谢爱民, 等.高超声速锥柱裙模型边界层转捩的弹道靶实验[J].实验流体力学, 2013, 27(6):26-31. http://www.syltlx.com/CN/abstract/abstract10409.shtml

    LIU S, WANG Z H, XIE A M, et al. Ballistic range experiments of hypersonic boundary layer transition on a cone-cylinder-flare configuration[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6):26-31. http://www.syltlx.com/CN/abstract/abstract10409.shtml
    [16] KIRK D B, INTRIERI P F, SEIFF A. Aerodynamic behavior of the viking entry vehicle: ground test and flight results[C]//Proc of the Guidance and Control Conference. 1977.
    [17] BROWN J, YATES L, BOGDANOFF D, et al. Free flight testing in support of the Mars smart lander aerodynamics database[R]. AIAA 2002-4410, 2002.
    [18] LIAO D J, LIU S, JIAN H X, et al. Measurement and calculation of shock stand-off distances over hypersonic spheres in CO2[C]//Proc of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. 2017.
    [19] 廖东骏, 柳森, 黄洁, 等. CO2中激波脱体距离的弹道靶实验测量和数值计算[J].实验流体力学, 2018, 32(3):69-74, 93. http://www.syltlx.com/CN/abstract/abstract11108.shtml

    LIAO D J, LIU S, HUANG J, et al. Ballistic range measure-ment and numerical calculation of shock standoff distances in CO2[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3):69-74, 93. http://www.syltlx.com/CN/abstract/abstract11108.shtml
    [20] Park C. The limits of two-temperature model[C]//Proc of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010.
    [21] WANG Z H, LIU S, XIE A M, et al. Shadowgraph imaging and post-processing for hypersonic boundary layer transition in ballistic range[J]. Journal of Flow Visualization and Image Processing, 2015, 22(4):229-238. doi: 10.1615/JFlowVisImageProc.2016016555
    [22] LOBB R K. Experimental measurement of shock detachment distance on spheres fired in air at hypervelocities[J]. The High Temperature Aspects of Hypersonic Flow, 1964, 68:519-527. http://www.sciencedirect.com/science/article/pii/B978148319828650031X
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  331
  • HTML全文浏览量:  150
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-25
  • 修回日期:  2019-05-07
  • 刊出日期:  2020-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日