留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄层液膜厚度的点测量和空间测量方法综述

李天宇 黄冰瑶 廉天佑 李松阳 李玉阳

李天宇, 黄冰瑶, 廉天佑, 等. 薄层液膜厚度的点测量和空间测量方法综述[J]. 实验流体力学, 2020, 34(1): 12-24. doi: 10.11729/syltlx20190075
引用本文: 李天宇, 黄冰瑶, 廉天佑, 等. 薄层液膜厚度的点测量和空间测量方法综述[J]. 实验流体力学, 2020, 34(1): 12-24. doi: 10.11729/syltlx20190075
LI Tianyu, HUANG Bingyao, LIAN Tianyou, et al. A review of the methods of point measurement and spatial measurement on thin liquid film thickness[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 12-24. doi: 10.11729/syltlx20190075
Citation: LI Tianyu, HUANG Bingyao, LIAN Tianyou, et al. A review of the methods of point measurement and spatial measurement on thin liquid film thickness[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 12-24. doi: 10.11729/syltlx20190075

薄层液膜厚度的点测量和空间测量方法综述

doi: 10.11729/syltlx20190075
基金项目: 

国家重点研发计划 2017YFE0123100

国家自然科学基金 51622605

中国航空发动机集团创新基金项目 ZZCX-2017-011

详细信息
    作者简介:

    李天宇(1993-), 男, 河南永城人, 博士研究生。研究方向:激光诊断、发动机喷雾与雾化。通信地址:上海市闵行区东川路800号上海交通大学机动学院C楼(200240)。E-mail:tianyu93@sjtu.edu.cn

    通讯作者:

    李玉阳, E-mail:yuygli@sjtu.edu.cn

  • 中图分类号: O359

A review of the methods of point measurement and spatial measurement on thin liquid film thickness

  • 摘要: 液膜现象广泛存在于自然界和工业过程中,特别是在发动机中,燃油雾化通常会形成亚毫米量级乃至微米量级的薄层液膜,其厚度的高精度测量对发动机的设计和改进具有重要意义。介绍了薄层液膜厚度测量中常用的点测量方法和空间测量方法。点测量方法包括电测法和全内反射法,用于单点液膜厚度的测量,具有成本低、操作简单的优点,但不具有空间分辨能力。空间测量方法包括电测法、荧光强度法和平面激光诱导荧光法,可同时测量多个位置乃至连续区间内的液膜厚度,获取液膜分布和运动发展信息。其中电测法操作方便、稳定性高,但是会对液膜产生扰动;而光测法为非侵入方法,适用于高速运动液膜的厚度测量。
  • 图  1  不同的电极对形式示意图

    Figure  1.  Schematic diagram of different probe types

    图  2  不同形状的嵌入式电极,其中蓝色表示发射极,紫色表示接受极,黑色表示接地极(基于文献[15]中的示意图重新作图)

    Figure  2.  Various geometries of flush-mounted electrodes. The blue, purple and black ones denote transmitter, receiver and ground electrode, respectively (Redrawn based on the schematic diagram of Ref.[15])

    图  3  全内反射法测量液膜厚度原理示意图(基于文献[51]中的示意图重新作图)

    Figure  3.  Schematic diagram of total internal reflection method for liquid film thickness measurement(Redrawn based on the schematic diagram of Ref.[51])

    图  4  利用全内反射法拍摄的光圈形态[52]

    Figure  4.  Reflection rings recorded by total internal reflection method[52]

    图  5  基于平面电容矩阵的电极矩阵法测量系统示意图(基于文献[36]中的示意图重新作图)

    Figure  5.  Schematic diagram of the measurement system for the electrode matrix method based on the capacitance planar sensor system(Redrawn based on the schematic diagram of Ref.[36])

    图  6  平面电极形状示意图(基于文献[70]中的示意图重新作图)

    Figure  6.  Schematic diagram of the geometry of planar electrodes (Redrawn based on the schematic diagram of Ref.[70])

    图  7  丝网传感器法测量系统示意图(基于文献[82]中的示意图重新作图)

    Figure  7.  Schematic diagram of the measurement system for the wire-mesh method(Redrawn based on the schematic diagram of Ref.[82])

    图  8  荧光强度法测量系统示意图(基于文献[95]中的示意图重新作图)

    Figure  8.  Schematic diagram of the measurement system for the fluorescence intensity method(Redrawn based on the schematic diagram of Ref.[95])

    图  9  荧光再吸收示意图(基于文献[97]中的示意图重新做图)

    Figure  9.  Schematic diagram of fluorescence reabsorption (Redrawn based on the schematic diagram of Ref.[97])

    图  10  液膜产生荧光信号的示意图(基于文献[97]中的示意图重新做图)

    Figure  10.  Schematic diagram of fluorescence generation froma liquid film (Redrawn based on the schematic diagram of Ref.[97])

    图  11  PLIF法测量系统示意图(基于文献[99]中示意图重新作图)

    Figure  11.  Schematic diagram of the measurement system for the PLIF method (Redrawn based on the schematic diagram of Ref.[99])

    图  12  不同ALR时,不同预膜管位置处液膜厚度(基于文献[105]中数据重新作图)

    Figure  12.  Spatial variation of film thickness at different ALR (Redrawn based on the data from Ref.[105])

    图  13  PLIF法中全反射现象的示意图(基于文献[106]中示意图重新作图)

    Figure  13.  Schematic diagram of the total reflection phenomenon in the PLIF method(Redrawn based on the schematic diagram of Ref.[106])

  • [1] GAPALE D L, AROTE S A, PALVE B M, et al. Effect of film thickness on humidity sensing of spray deposited TiO2 thin films[J]. Materials Research Express, 2019, 6: 026402. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9461001
    [2] OBERT P, FUSSER H J, BARTEL D. Oil distribution and oil film thickness within the piston ring-liner contact measured by laser-induced fluorescence in a reciprocating model test under starved lubrication conditions[J]. Tribol Int, 2019, 129: 191-201. doi: 10.1016/j.triboint.2018.07.022
    [3] XUE T, ZHANG S Z, WU B. Study of spatiotemporally resolved temperature field and heat transfer in liquid film using PLIF[J]. Heat Mass Transf, 2019, 55(3): 845-854. doi: 10.1007/s00231-018-2465-5
    [4] DOU P, WU T H, LUO Z P, et al. The application of the principle of wave superposition in ultrasonic measurement of lubricant film thickness[J]. Measurement, 2019, 137: 312-322. doi: 10.1016/j.measurement.2019.01.057
    [5] BONILLA-RIANO A, VELASCO-PENA H F, BANNWART A C, et al. Water film thickness measurement system for oil-water pipe flow[J]. Flow Meas Instrum, 2019, 66: 86-98. doi: 10.1016/j.flowmeasinst.2019.02.007
    [6] 庞昌乐, 赵洪雪, 静大亮, 等.喷油策略对GDI发动机碳烟生成的影响[J].汽车工程, 2017, 39(9): 984-988, 1003. http://d.old.wanfangdata.com.cn/Periodical/qcgc201709002

    PANG C L, ZHAO H X, JING D L, et al. Effects of injection strategy on soot formation in GDI engines[J]. Automot Eng, 2017, 39(9): 984-988, 1003. http://d.old.wanfangdata.com.cn/Periodical/qcgc201709002
    [7] WANG B Y, MOSBACH S, SCHMUTZHARD S, et al. Modelling soot formation from wall films in a gasoline direct injection engine using a detailed population balance model[J]. Appl Energy, 2016, 163: 154-166. doi: 10.1016/j.apenergy.2015.11.011
    [8] LI X S, PAN H J, DONG X, et al. Spray impingement wall film breakup by wave entrainment[J]. Proc Combust Inst, 2019, 37(3): 3287-3294. doi: 10.1016/j.proci.2018.07.101
    [9] LIU L J, YANG L J. Nonlinear wave evolution of shear-thinning Carreau liquid sheets[J]. J Fluid Mech, 2018, 859: 659-676.
    [10] HUGHMARK G A, PRESSBURG B S. Holdup and pressure drop with gas-liquid flow in a vertical pipe[J]. AICHE J, 1961, 7(4): 677-682. doi: 10.1002/aic.690070429
    [11] CRAVAROLO L, HASSID A, VILLANI S. A beta-ray attenuation method for density measurements of liquid-gas mixtures in adiabatic flow[J]. Energ Nucl, 1961, 8(12): 751-757. http://cn.bing.com/academic/profile?id=62fb6b1cd90ddb0554ea06655a9c3f72&encoded=0&v=paper_preview&mkt=zh-cn
    [12] CLARK W W. Liquid film thickness measurement[J]. Multiphase Sci Technol, 2002, 14(1): 1-74. http://d.old.wanfangdata.com.cn/Periodical/xasyxyxb201704011
    [13] PENA H F V, RODRIGUEZ O M H. Applications of wire-mesh sensors in multiphase flows[J]. Flow Meas Instrum, 2015, 45: 255-273. doi: 10.1016/j.flowmeasinst.2015.06.024
    [14] RIANO A B, BANNWART A C, RODRIGUEZ O M H. Film thickness planar sensor in oil-water flow: prospective study[J]. Sens Rev, 2015, 35(2): 200-209. http://cn.bing.com/academic/profile?id=f949353cef2aa3b9f0b61a527610ed58&encoded=0&v=paper_preview&mkt=zh-cn
    [15] RIANO A B, PENA H F V, RODRIGUEZ O M H, et al. High spatial and temporal resolution film thickness planar sensor: comparison of geometries[J]. Sens Rev, 2019, 39(1): 78-86. https://www.researchgate.net/publication/325228715_High_spatial_and_temporal_resolution_film_thickness_planar_sensor_comparison_of_geometries
    [16] TIBIRICA C B, DO NASCIMENTO F J, RIBATSKI G. Film thickness measurement techniques applied to micro-scale two-phase flow systems[J]. Exp Therm Fluid Sci, 2010, 34(4): 463-473. doi: 10.1016/j.expthermflusci.2009.03.009
    [17] RUTTINGER S, SPILLE C, HOFFMANN M, et al. Laser-induced fluorescence in multiphase systems[J]. Chem Bio Eng Rev, 2018, 5(4): 253-269. doi: 10.1002/cben.201800005
    [18] GIROUD-GARAPON S, HEID G, LAVERGNE G, et al. A non-invasive liquid film thickness measurement[C]//ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. Hawaii, USA, 2003.
    [19] WANG G R, FIEDLER H E. On high spatial resolution scalar measurement with LIF-Part 2: The noise characteristic[J]. Exp Fluids, 2000, 29(3): 265-274. doi: 10.1007/s003489900084
    [20] ARENDS A A, GERMAIN T M, OWENS J F, et al. Simultaneous reflectometry and interferometry for measuring thin-film thickness and curvature[J]. Rev Sci Instrum, 2018, 89(5): 055117. doi: 10.1063/1.5021704
    [21] HAN Y, SHIKAZONO N, KASAGI N. Measurement of liquid film thickness in a micro parallel channel with interferometer and laser focus displacement meter[J]. Int J Multiph Flow, 2011, 37(1): 36-45. doi: 10.1016/j.ijmultiphaseflow.2010.08.010
    [22] KEELEY A M, WATERS N D, CUMMINS P G, et al. Draining thin films. 2. Laser measurements of film thickness and velocity profile[J]. J Non-Newton Fluid Mech, 1989, 32(1): 79-94. https://www.sciencedirect.com/science/article/abs/pii/0377025789850426
    [23] NOZHAT W M. Measurement of liquid-film thickness by laser interferometry[J]. Appl Optics, 1997, 36(30): 7864-7869. doi: 10.1364/AO.36.007864
    [24] ELSÄSSER A, SAMENFINK W, EBNER J, et al. Effect of variable liquid properties on the flow structure within shear-driven wall films[C]//9th International Symposium on Laser Application to Fluid Mechanics, Lisbon, Portugal, 1998.
    [25] LILLELEHT L U, HANRATTY T J. Measurement of interfacial structure for co-current air-water flow[J]. J Fluid Mech, 1961, 11(1): 65-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S002211206100086X
    [26] YU S C M, TSO C P. Simulation of fiber optic sensors in determination of thin liquid film thicknesses[J]. Adv Eng Softw, 1995, 22(1): 55-62. doi: 10.1016/0965-9978(95)00007-J
    [27] ADDLESEE A J, CORNWELL K. Liquid film thickness above a bubble rising under an inclined plate[J]. Chem Eng Res Des, 1997, 75(A7): 663-667. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5d593760738603db041a10fe1db69014
    [28] NG T W, NARAIN A, KIVISALU M T. Fluorescence and fiber-optics based real-time thickness sensor for dynamic liquid films[J]. J Heat Transf-Trans ASME, 2010, 132(3): 031603. doi: 10.1115/1.4000045
    [29] PERRON A, KISS L I, VERREAULT R. A multifibre optic sensor to measure the liquid film thickness between a moving bubble and an inclined solid surface[J]. Meas Sci Technol, 2006, 17(6): 1594-1600. doi: 10.1088/0957-0233/17/6/042
    [30] ALEKSEENKO S V, NAKORYAKOV V E, POKUSAEV B G. Wave formation on vertical falling liquid films[J]. Int J Multiph Flow, 1985, 11(5): 607-627. doi: 10.1016/0301-9322(85)90082-5
    [31] BELKIN H H, MACLEOD A A, MONRAD C C, et al. Turbulent liquid flow down vertical walls[J]. AICHE J, 1959, 5(2): 245-248. doi: 10.1002/aic.690050222
    [32] NAKORYAKOV V E, POKUSAEV B G, ALEKSEENKO S V. Stationary two-dimensional rolling waves on a vertical film of fluid[J]. J Eng Phys, 1976, 30(5): 517-521. doi: 10.1007/BF00863656
    [33] SALAZAR R P, MARSCHALL E. Time-average local thickness measurement in falling liquid film flow[J]. Int J Multiph Flow, 1978, 4(4): 405-412. doi: 10.1016/0301-9322(78)90034-4
    [34] SALAZAR R P, MARSCHALL E. Thickness measurement in liquid film flow by laser scattering[J]. Rev Sci Instrum, 1975, 46(11): 1539-1541. doi: 10.1063/1.1134099
    [35] DUKLER A. Characteristics of flow in falling liquid film[J]. Chem Eng Prog, 1952, 48(11): 557-563.
    [36] THIELE S, DA SILVA M J, HAMPEL U. Capacitance planar array sensor for fast multiphase flow imaging[J]. IEEE Sens J, 2009, 9(5-6): 533-540. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b8589dbb63c15b002fce04bedcf48413
    [37] NOLEN C, POERNER M. Measuring water film thickness in a wet gas compressor diffuser-design, calibration, and testing of electromagnetic probes[J]. J Eng Gas Turbines Power-Trans ASME, 2018, 140(5): 051601. doi: 10.1115/1.4038151
    [38] KIM S, YOON J, YOON Y. Experimental study on the internal flow characteristics for recess length in a swirl coaxialinjector[R]. AIAA 2010-6812, 2010.
    [39] PAOLINELLI L D, YAO J, RASHEDI A. Phase wetting detection and water layer thickness characterization in two-phase oil-water flow using high frequency impedance measurements[J]. J Petrol Sci Eng, 2017, 157: 671-679. doi: 10.1016/j.petrol.2017.07.065
    [40] LI X B B, LARSON S D, ZYUZIN A S, et al. Design principles for multicuhannel fringing electric field sensors[J]. IEEE Sens J, 2006, 6(2): 434-440. doi: 10.1109/JSEN.2006.870161
    [41] RIANO A B, BANNWART A C, RODRIGUEZ O M H, et al. A high spatial and temporal resolution film thickness sensor in oil-water flows[C]//2014 IEEE International Instrumentation and Measurement Technology Conference (12 MTC) Procee-dings. 2014.
    [42] DAMSOHN M, PRASSER H M. Droplet deposition measurement with high-speed camera and novel high-speed liquid film sensor with high spatial resolution[J]. Nucl Eng Des, 2011, 241(7): 2494-2499. doi: 10.1016/j.nucengdes.2011.04.016
    [43] DAMSOHN M, PRASSER H M. High-speed liquid film sensor for two-phase flows with high spatial resolution based on electrical conductance[J]. Flow Meas Instrum, 2009, 20(1): 1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=31075b8f64e2b41238f3d24f0efb2188
    [44] CONEY M W E. The theory and application of conductance probes for the measurement of liquid film thickness in two-phase flow[J]. J Phys E Sci Instrum, 1973, 6(9): 903-911. doi: 10.1088/0022-3735/6/9/030
    [45] KOSKIE J E, MUDAWAR I, TIEDERMAN W G. Parallel-wire probes for measurement of thick liquid films[J]. Int J Multiph Flow, 1989, 15(4): 521-530. doi: 10.1016/0301-9322(89)90051-7
    [46] BROWN R C, ANDREUSSI P, ZANELLI S. The use of wire probes for the measurement of liquid film thickness in annular gas-liquid flows[J]. Can J Chem Eng, 1978, 56(6): 754-757. doi: 10.1002/cjce.5450560618
    [47] WANG C, ZHAO N, CHEN C, et al. A method for direct thickness measurement of wavy liquid film in gas-liquid two-phase annular flow using conductance probes[J]. Flow Meas Instrum, 2018, 62: 66-75. doi: 10.1016/j.flowmeasinst.2018.05.002
    [48] MURAV'EV M Y, VASHAK F, KULOV N N. Determination of the instantaneous thickness of a falling liquid film with a microelectrode[J]. Theor Found Chem Eng, 1983, 17(6): 511-515.
    [49] FUKANO T. Measurement of time varying thickness of liquid film flowing with high speed gas flow by a constant electric current method (CECM)[J]. Nucl Eng Des, 1998, 184(2-3): 363-377. doi: 10.1016/S0029-5493(98)00209-X
    [50] ALMABROK A A, ALIYU A M, LAO L Y, et al. Gas/liquid flow behaviours in a downward section of large diameter vertical serpentine pipes[J]. Int J Multiph Flow, 2016, 78: 25-43. doi: 10.1016/j.ijmultiphaseflow.2015.09.012
    [51] HURLBURT E T, NEWELL T A. Optical measurement of liquid film thickness and wave velocity in liquid film flows[J]. Exp Fluids, 1996, 21(5): 357-362. doi: 10.1007/BF00189056
    [52] KIURA T, SHEDD T A, BLASER B C. Investigation of spray evaporation and numerical model applied for fuel-injection small engines[J]. SAE Int J Engines, 2008, 1(1): 1402-1409. doi: 10.4271/2008-32-0064
    [53] SHEDD T A, NEWELL T A. Automated optical liquid film thickness measurement method[J]. Rev Sci Instrum, 1998, 69(12): 4205-4213. doi: 10.1063/1.1149232
    [54] KABARDIN I, MELEDIN V, ELISEEV I, et al. Optical measurement of instantaneous liquid film thickness based on total internal reflection[J] J Eng Thermophys, 2011, 20(4): 407-415. doi: 10.1134/S1810232811040072
    [55] KABARDIN I K, NAUMOV I V, DESTECH PUBLICAT I. Reflection method for optical measurements of transparent ice on a wind turbine blade[M]. Lancaster: Destech Publications Inc, 2015.
    [56] KABARDIN I K, MELEDIN V G, DVOINISHNIKOV S V, et al. Remote monitoring of ice loading on wind turbine blades based on total internal reflection[J] J Eng Thermophys, 2016, 25(4): 504-508. doi: 10.1134/S181023281604007X
    [57] PARAS S V, KARABELAS A J. Properties of the liquid layer in horizontal annular flow[J]. Int J Multiph Flow, 1991, 17(4): 439-454. doi: 10.1016/0301-9322(91)90041-Z
    [58] PAUTSCH A G, SHEDD T A. Adiabatic and diabatic measurements of the liquid film thickness during spray cooling with FC-72[J]. Int J Heat Mass Tran, 2006, 49(15-16): 2610-2618. doi: 10.1016/j.ijheatmasstransfer.2006.01.024
    [59] SHEDD T A, CORN M L, COHEN J M, et al. Liquid film formation byan impinging jet in a high-velocity air stream[R]. AIAA 2009-998, 2009.
    [60] SHEDD T A, NEWELL T A. Characteristics of the liquid film and pressure drop in horizontal, annular, two-phase flow through round, square and triangular tubes[J] J Fluids Eng-Trans ASME, 2004, 126(5): 807-817. doi: 10.1115/1.1792261
    [61] XIAO J G, HRNJAK P. A new flow regime map and void fraction model based on the flow characterization of condensation[J]. Int J Heat Mass Tran, 2017, 108: 443-452. doi: 10.1016/j.ijheatmasstransfer.2016.11.104
    [62] DRAKE M C, FANSLER T D, SOLOMON A S, et al. Piston fuel films as a source of smoke and hydrocarbon emissions from a wall-controlled spark-ignited sirect-injection engine[R]. SAE Technical Paper 2003-2001-0547, 2003.
    [63] YANG B, GHANDHI J. Measurement of diesel spray impingement and fuel film characteristics using refractive index matching method[R]. SAE Technical Paper 2007-2001-0485, 2007.
    [64] MALIGNE D, BRUNEAUX G. Time-resolved fuel film thickness measurement for direct injection SI engines using refractive index matching[R]. SAE Technical Paper 2011-2001-1215, 2011.
    [65] HENKEL S, BEYRAU F, HARDALUPAS Y, et al. Novel method for the measurement of liquid film thickness during fuel spray impingement on surfaces[J]. Opt Express, 2016, 24(3): 2542-2561. doi: 10.1364/OE.24.002542
    [66] LUO H L, UCHITOMI S, NISHIDA K, et al. Experimental investigation on fuel film formation by spray impingement on flat walls with different surface roughness[J]. Atom Sprays, 2017, 27(7): 611-628. doi: 10.1615/AtomizSpr.2017019706
    [67] DING C P, SJOBERG M, VUILLEUMIER D, et al. Fuel film thickness measurements using refractive index matching in a stratified-charge SI engine operated on E30 and alkylate fuels[J]. Exp Fluids, 2018, 59(3): 59. doi: 10.1007/s00348-018-2512-5
    [68] SILVA M J D, SVHNEL T, SCHLEICHER E, et al. Planar array sensor for high-speed component distribution imaging in fluid flow applications[J]. Sensors, 2007, 7(10): 2430-2445. doi: 10.3390/s7102430
    [69] PRASSER H M, BOTTGER A, ZSCHAU J. A new electrode-mesh tomograph for gas-liquid flows[J]. Flow Meas Instrum, 1998, 9(2): 111-119. https://www.sciencedirect.com/science/article/abs/pii/S0955598698000156
    [70] DAMSOHN M, PRASSER H M. High-speed liquid film sensor with high spatial resolution[J]. Meas Sci Technol, 2009, 20(11): 114001. doi: 10.1088/0957-0233/20/11/114001
    [71] DAMSOHN M, PRASSER H M. Experimental studies of the effect of functional spacers to annular flow in subchannels of a BWR fuel element[J]. Nucl Eng Des, 2010, 240(10): 3126-3144. doi: 10.1016/j.nucengdes.2010.05.032
    [72] ITO D, DAMSOHN M, PRASSER H M, et al. Dynamic film thickness between bubbles and wall in a narrow channel[J]. Exp Fluids, 2011, 51(3): 821-833. doi: 10.1007/s00348-011-1105-3
    [73] ZBORAY R, KICKHOFEL J, DAMSOHN M, et al. Cold-neutron tomography of annular flow and functional spacer performance in a model of a boiling water reactor fuel rod bundle[J]. Nucl Eng Des, 2011, 241(8): 3201-3215. doi: 10.1016/j.nucengdes.2011.06.029
    [74] HUANG H J, DHIR V K, PAN L M. Liquid film thickness measurement underneath a gas slug with miniaturized sensor matrix in a microchannel[J]. Microfluidics and Nanofluidics, 2017, 21(10): 159. doi: 10.1007/s10404-017-1998-0
    [75] WONG R D P, POSNER J D, SANTOS V J. Flexible microfluidic normal force sensor skin for tactile feedback[J]. Sens Actuator A-Phys, 2012, 179: 62-69. doi: 10.1016/j.sna.2012.03.023
    [76] HE D H, CHEN S L, BAI B F. Void fraction measurement of stratified gas-liquid flow based on multi-wire capacitance probe[J]. Exp Therm Fluid Sci, 2019, 102: 61-73. doi: 10.1016/j.expthermflusci.2018.11.005
    [77] OFUCHI C Y, EIDT H K, RODRIGUES C C, et al. Multiple wire-mesh sensors applied to the characterization of two-phase flow inside a cyclonic flow distribution system[J]. Sensors, 2019, 19(1): 193. doi: 10.3390/s19010193
    [78] CELY M M H, BAPTISTELLA V E C, RODRIGUEZ O M H. Study and characterization of gas-liquid slug flow in an annular duct, using high speed video camera, wire-mesh sensor and PIV[J]. Exp Therm Fluid Sci, 2018, 98: 563-575. doi: 10.1016/j.expthermflusci.2018.06.031
    [79] SEKOGUCHI K, TAKEISHI M, ISHIMATSU T. Interfacial structure in vertical upward annular flow[J]. PhysicoChem Hydrodyn, 1985, 6(1-2): 239-255.
    [80] TAKEISHI M, SEKOGUCHI K, SHIMIZU H, et al. Velocity of liquid lumps in vertical upward gas-liquid two-phase flow[J]. Nihon Kikai Gakkai Ronbunshu B, 1987, 53(493): 2800-2806. http://cn.bing.com/academic/profile?id=82ba802523a9964004ebfd830b8dece1&encoded=0&v=paper_preview&mkt=zh-cn
    [81] SEKOGUCHI K, TAKEISHI M. Interfacial structures in upward huge wave flow and annular flow regimes[J]. Int J Multiph Flow, 1989, 15(3): 295-305. doi: 10.1016/0301-9322(89)90002-5
    [82] DA SILVA M J, SCHLEICHER E, HAMPEL U. Capacitance wire-mesh sensor for fast measurement of phase fraction distributions[J]. Meas Sci Technol, 2007, 18(7): 2245-2251. doi: 10.1088/0957-0233/18/7/059
    [83] DA SILVA M J, HAMPEL U. A field-focusing imaging sensor for fast visualization of multiphase flows[J]. Meas Sci Technol, 2009, 20(10): 104009. doi: 10.1088/0957-0233/20/10/104009
    [84] LOPEZ J M, MOHAN R, SHOHAM O, et al. Experimental investigation of falling liquid film in vertical download two-phase pipe flow[C]//Proceedings of the ASME Fluids Engineering Division Summer Meeting. 2012.
    [85] VIEIRA R E, PARSI M, MCLAURY B S, et al. Experimental characterization of vertical downward two-phase annular flows using wire-mesh sensor[J]. Chem Eng Sci, 2015, 134: 324-339. doi: 10.1016/j.ces.2015.05.013
    [86] CUI Z Q, WANG H X, CHEN Z Q, et al. Image reconstruction for field-focusing capacitance imaging[J]. Meas Sci Technol, 2011, 22(3): 035501. doi: 10.1088/0957-0233/22/3/035501
    [87] IDER Y Z, EYUBOGLU B M, KUZUOGLU M, et al. A method for comparative evaluation of EIT algorithms using a standard data set[J]. Physiological Mensurement, 1995, 16(supplement 3A): A227-A236. http://cn.bing.com/academic/profile?id=23c4841164b65fdc6805015b263951fc&encoded=0&v=paper_preview&mkt=zh-cn
    [88] STEINER G, WATZENIG D, ZANGL H, et al. Impact of the reconstruction method on the point spread function in electrical tomography[C]//13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography, New York, 2007.
    [89] KARASSO P S, MUNGAL M G. PLIF measurements in aqueous flows using the Nd: YAG laser[J]. Exp Fluids, 1997, 23(5): 382-387. doi: 10.1007/s003480050125
    [90] GRESZIK D, YANG H N, DREIER T, et al. Laser-based diagnostics for the measurement of liquid water film thickness[J]. Appl Optics, 2011, 50(4): A60-A67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f600e6b947ebeb507c67ceb9ab2b41eb
    [91] CHERDANTSEV A V, HANN D B, AZZOPARDI B J. Study of gas-sheared liquid film in horizontal rectangular duct using high-speed LIF technique: Three-dimensional wavy structure and its relation to liquid entrainment[J]. Int J Multiph Flow, 2014, 67: 52-64. doi: 10.1016/j.ijmultiphaseflow.2014.08.003
    [92] MORTON C E, BAKER R C, HUTCHINGS I M. Measurement of liquid film thickness by optical fluorescence and its application to an oscillating piston positive displacement flowmeter[J]. Meas Sci Technol, 2011, 22(12): 125403. doi: 10.1088/0957-0233/22/12/125403
    [93] SCHULZ F, SCHMIDT J, BEYRAU F. Development of a sensitive experimental set-up for LIF fuel wall film measurements in a pressure vessel[J]. Exp Fluids, 2015, 56(5): 98. doi: 10.1007/s00348-015-1971-1
    [94] SCHULZ F, BEYRAU F. The effect of operating parameters on the formation of fuel wall films as a basis for the reduction of engine particulate emissions[J]. Fuel, 2019, 238: 375-384. doi: 10.1016/j.fuel.2018.10.109
    [95] HOANG A, BERTELOOT G, SHARIF-KASHANI P, et al. Dynamic measurement of microfilms and nanofilms of fluids using fluorescence microscopy[J]. Exp Fluids, 2012, 52(6): 1657-1662. doi: 10.1007/s00348-012-1279-3
    [96] COPPETA J, ROGERS C. Dual emission laser induced fluorescence for direct planar scalar behavior measurements[J]. Exp Fluids, 1998, 25(1): 1-15. doi: 10.1007/s003480050202
    [97] HIDROVO C H, HART D P. Emission reabsorption laser induced fluorescence (ERLIF) film thickness measurement[J]. Meas Sci Technol, 2001, 12(4): 467-477. doi: 10.1088/0957-0233/12/4/310
    [98] HIDROVO C H, BRAU R R, HART D P. Excitation nonlinearities in emission reabsorption laser-induced fluorescence techniques[J]. Appl Optics, 2004, 43(4): 894-913. doi: 10.1364/AO.43.000894
    [99] SCHUBRING D, ASHWOOD A C, SHEDD T A, et al. Planar laser-induced fluorescence (PLIF) measurements of liquid film thickness in annular flow. Part I: Methods and data[J]. Int J Multiph Flow, 2010, 36(10): 815-824. doi: 10.1016/j.ijmultiphaseflow.2010.05.007
    [100] SCHUBRING D, SHEDD T A, HURLBURT E T. Planar laser-induced fluorescence (PLIF) measurements of liquid film thickness in annular flow. Part II: Analysis and comparison to models[J]. Int J Multiph Flow, 2010, 36(10): 825-835. doi: 10.1016/j.ijmultiphaseflow.2010.02.002
    [101] ALEKSEENKO S V, ANTIPIN V A, CHERDANTSEV A V, et al. Investigation of waves interaction in annular gas-liquid flow using high-speed fluorescent visualization technique[J]. Microgravity Sci Technol, 2008, 20(3-4): 271-275. doi: 10.1007/s12217-008-9028-1
    [102] ALEKSEENKO S, CHERDANTSEV A, CHERDANTSEV M, et al. Application of a high-speed laser-induced fluorescence technique for studying the three-dimensional structure of annular gas-liquid flow[J]. Exp Fluids, 2012, 53(1): 77-89. doi: 10.1007/s00348-011-1200-5
    [103] FARIAS P S C, MARTINS F, SAMPAIO L E B, et al. Liquid film characterization in horizontal, annular, two-phase, gas-liquid flow using time-resolved laser-induced fluorescence[J]. Exp Fluids, 2012, 52(3): 633-645. doi: 10.1007/s00348-011-1084-4
    [104] VOLZ M, KONLE M, GEBRETSADIK M, et al. Investigation of a Prefilming Airblast Atomizer With Respect to Surface Stripping[C]//Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. 2015.
    [105] SHANMUGADAS K P, CHAKRAVARTHY S R. A canonical geometry to study wall filming and atomization in pre-filming coaxial swirl injectors[J]. Proc Combust Inst, 2017, 36(2): 2467-2474. doi: 10.1016/j.proci.2016.08.082
    [106] HABER T, GEBRETSADIK M, BOCKHORN H, et al. The effect of total reflection in PLIF imaging of annular thin films[J]. Int J Multiph Flow, 2015, 76: 64-72. doi: 10.1016/j.ijmultiphaseflow.2015.06.009
    [107] CHAROGIANNIS A, AN J S, MARKIDES C N. A simultaneous planar laser-induced fluorescence, particle image velocimetry and particle tracking velocimetry technique for the investigation of thin liquid-film flows[J]. Exp Therm Fluid Sci, 2015, 68: 516-536. doi: 10.1016/j.expthermflusci.2015.06.008
  • 加载中
图(13)
计量
  • 文章访问数:  326
  • HTML全文浏览量:  138
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-29
  • 修回日期:  2019-07-19
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日