留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种非介入式高超声速边界层不稳定波的测量方法

余涛 张威 张毅锋 陈久芬 陈坚强 吴杰

余涛, 张威, 张毅锋, 等. 一种非介入式高超声速边界层不稳定波的测量方法[J]. 实验流体力学, 2019, 33(5): 70-75. doi: 10.11729/syltlx20190076
引用本文: 余涛, 张威, 张毅锋, 等. 一种非介入式高超声速边界层不稳定波的测量方法[J]. 实验流体力学, 2019, 33(5): 70-75. doi: 10.11729/syltlx20190076
Yu Tao, Zhang Wei, Zhang Yifeng, et al. Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 70-75. doi: 10.11729/syltlx20190076
Citation: Yu Tao, Zhang Wei, Zhang Yifeng, et al. Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 70-75. doi: 10.11729/syltlx20190076

一种非介入式高超声速边界层不稳定波的测量方法

doi: 10.11729/syltlx20190076
基金项目: 

国家自然基金青年科学基金项目 11702106

装备预先研究项目 41406020901

国家自然科学基金面上项目 11872370

国家重点研发计划项目 2016YFA0401200

详细信息
    作者简介:

    余涛(1995-), 男, 湖北襄阳人, 硕士研究生。研究方向:高超声速流场测量。通信地址:湖北省武汉市洪山区关山街道珞喻路1037号华中科技大学航空航天学院(430074)。E-mail:yu_tao@hust.edu.cn

    通讯作者:

    吴杰,E-mail: jiewu@hust.edu.cn

  • 中图分类号: V211.72

Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer

  • 摘要: 地面风洞实验是开展高超声速边界层转捩研究的主要手段之一,但是目前可用于高超声速边界层三维空间测量的实验技术仍极为缺乏,且已有测量技术的动态响应频率普遍较低。基于光的折射和干涉原理,搭建了一套非介入式聚焦激光差分干涉仪测量系统(Focused Laser Differential Interferometry,FLDI),可有效获取三维流场空间点的密度变化。在马赫数为8的常规高超声速风洞中,使用FLDI开展了来流雷诺数107/m、7°半锥角尖锥标模边界层的不稳定波测量实验。结果显示FLDI成功捕获到频率在327 kHz的第二模态不稳定波及其谐波(645 kHz)。通过与PCB测试结果进行对比,FLDI的高信噪比、高解析频率(本文实验有效解析频率1.5 MHz)、高空间分辨率(沿流向小于1 mm)等优点得以体现。鉴于FLDI的高时空分辨率等优良特性,其可用于高超声速边界层不稳定波行为以及感受性等问题的研究,为深入认识高超声速边界层转捩机制以及感受性问题提供了有效手段。
  • 图  1  FLDI原理图

    Figure  1.  Schematic diagram of the FLDI technique

    图  2  FLDI测点菱形区域A

    Figure  2.  Rhombus FLDI measuring region A

    图  3  常规高超声速风洞原理图

    Figure  3.  Schematic diagram of conventional hypersonic wind tunnel

    图  4  FLDI发射光路

    Figure  4.  FLDI light path(emitting part)

    图  5  FLDI接收光路

    Figure  5.  FLDI light path(receiving part)

    图  6  7°半锥角尖锥和FLDI测点

    Figure  6.  7° half-angle sharp cone and the measuring point

    图  7  FLDI测点位置示意图

    Figure  7.  Sketch of the FLDI measuring point position

    图  8  FLDI敏感性测试原理

    Figure  8.  Schematic diagram of the FLDI sensibility test

    图  9  FLDI敏感性测试结果

    Figure  9.  Result of the FLDI sensitivity test

    图  10  FLDI边界层测量原始数据

    Figure  10.  FLDI raw data of boundary layer measurement

    图  11  FLDI测得边界层第二模态不稳定波

    Figure  11.  Second mode instability wave in boundary layer captured by FLDI

    图  12  PCB测得的边界层第二模态不稳定波

    Figure  12.  Second mode instability wave in boundary layer detected by PCB sensor

  • [1] 刘向宏, 赖光伟, 吴杰.高超声速边界层转捩实验综述[J].空气动力学学报, 2018, 36(2):196-211. doi: 10.7638/kqdlxxb-2018.0017

    Liu X H, Lai G W, Wu J. Boundary-layer transition experi-ment in hypersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2):196-211. doi: 10.7638/kqdlxxb-2018.0017
    [2] Lin T C. Influence of laminar boundary-layer transition on entry vehicle designs[J]. Journal of Spacecraft and Rockets, 2008, 45(2):165-175. doi: 10.2514/1.30047
    [3] Smeets G, George A. Gas-dynamic investigations in a shock tube using a highly sensitive interferometer[R]. No. REPT-14/71, 1973.
    [4] Smeets G. Laser interferometer for high sensitivity measure-ments on transient phase objects[J]. IEEE Transactions on Aerospace and Electronic Systems, 1972, AES-8(2):186-190. doi: 10.1109/TAES.1972.309488
    [5] Smeets G, George A. Laser-differential interferometer applica-tions in gas dynamics[R]. No. REPT-28/73, 1996.
    [6] Smeets G. Flow diagnostics by laser interferometry[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977, AES-13(2):82-90. doi: 10.1109/TAES.1977.308441
    [7] Parziale N J, Shepherd J E, Hornung H G. Differential interferometric measurement of instability at two points in a hypervelocity boundary layer[R]. AIAA-2013-0521, 2013.
    [8] Parziale N J, Shepherd J E, Hornung H G. Differential interferometric measurement of instability in a hypervelocity boundary layer[J]. AIAA Journal, 2013, 51(3):750-754. doi: 10.2514/1.J052013
    [9] Parziale N J, Shepherd J E, Hornung H G. Observations of hypervelocity boundary-layer instability[J]. Journal of Fluid Mechanics, 2015, 781:87-112. doi: 10.1017/jfm.2015.489
    [10] Parziale N J, Shepherd J E, Hornung H G. Free-stream density perturbations in a reflected-shock tunnel[J]. Experiments in Fluids, 2014, 55(2):1665. doi: 10.1007/s00348-014-1665-0
    [11] Parziale N J, Shepherd J E, Hornung H G. Reflected shock tunnel noise measurement by focused differential interferometry[R]. AIAA-2012-3261, 2012.
    [12] Fulghum M R. Turbulence measurements in high-speed wind tunnels using focusing laser differential interferometry[D]. State College: The Pennsylvania State University, 2014.
    [13] Schmidt B E, Shepherd J E. Analysis of focused laser diffe-rential interferometry[J]. Applied optics, 2015, 54(28):8459-8472. doi: 10.1364/AO.54.008459
    [14] Jewell J S, Parziale N J, Lam K L, et al. Disturbance and phase speed measurements for shock tubes and hypersonic boundary-layer instability[R]. AIAA-2016-3112, 2016.
    [15] Settles G S, Fulghum M R. The focusing laser differential interferometer, an instrument for localized turbulence measure-ments in refractive flows[J]. Journal of Fluids Engineering, 2016, 138(10):101402. doi: 10.1115/1.4033960
    [16] Kine S J, McClintock F A. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1953, 75:3-8.
    [17] Beckwith T G, Marangoni R D, Lienhard J H V. Mechanical measurements[M]. Upper Saddle River:Pearson-Prentice Hall, 2007.
  • 加载中
图(12)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  139
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-22
  • 修回日期:  2019-09-03
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日