留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于物理模型的汽车空气动力学研究综述

刘锦生 徐胜金 王庆洋 鲍欢欢 王勇

刘锦生, 徐胜金, 王庆洋, 等. 基于物理模型的汽车空气动力学研究综述[J]. 实验流体力学, 2020, 34(1): 38-48. doi: 10.11729/syltlx20190081
引用本文: 刘锦生, 徐胜金, 王庆洋, 等. 基于物理模型的汽车空气动力学研究综述[J]. 实验流体力学, 2020, 34(1): 38-48. doi: 10.11729/syltlx20190081
LIU Jinsheng, XU Shengjin, WANG Qingyang, et al. Review of automotive aerodynamics research based on physical models[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 38-48. doi: 10.11729/syltlx20190081
Citation: LIU Jinsheng, XU Shengjin, WANG Qingyang, et al. Review of automotive aerodynamics research based on physical models[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 38-48. doi: 10.11729/syltlx20190081

基于物理模型的汽车空气动力学研究综述

doi: 10.11729/syltlx20190081
基金项目: 

国家自然科学基金 11772173

中国汽研科研发展基金 MS-03-03

详细信息
    作者简介:

    刘锦生(1990-), 男, 福建龙岩人, 博士研究生。研究方向:汽车空气动力学、实验流体力学。通信地址:北京市海淀区清华大学航天航空学院(100084)。E-mail:ljs16@mails.tsinghua.edu.cn

    通讯作者:

    徐胜金, E-mail:xu_shengjin@tsinghua.edu.cn

  • 中图分类号: U461.1

Review of automotive aerodynamics research based on physical models

  • 摘要: 汽车空气动力学涉及到绕流湍流、流动稳定性、流动分离与控制、流固耦合及噪声等复杂且基础的流体力学问题。本文梳理了国内外学者基于汽车物理模型的空气动力学研究进展,介绍了前人在气动力、流场研究、流动控制、计算和实验的对标、多车空气动力学、污染、风噪等方面取得的研究成果,分析了研究存在的不足,并对未来汽车空气动力学研究方向进行了探讨和展望。
  • 图  1  车身周围的流动

    Figure  1.  Flow around a car

    图  2  Ahmed、MIRA和DrivAer模型的侧轮廓图

    Figure  2.  Ahmed, MIRA and DrivAer models

    图  3  Ahmed模型周围的流动结构[18]Re =(0.45~2.40)×105

    Figure  3.  A conceptual model of the flow structure around the Ahmed model[18], Re =(0.45~2.40)×105

    图  4  Ahmed模型风阻系数随后背角度的变化关系[1]

    Figure  4.  Drag coefficient of an Ahmed model with different base slant angles[1]

    图  5  Ahmed模型不同后背角的尾部流动结构示意图[1]

    Figure  5.  Flow structures behind an Ahmed model with different base slant angles[1]

    图  6  MIRA模型不同后背的相干结构[19]及风阻系数[20]

    Figure  6.  Flow structures and the drag coefficients of a MIRA model with different backs[19-20]

    图  7  MIRA快背式模型周围的涡结构[21-22]

    Figure  7.  Schematic of flow structure of fastback model[21-22]

    图  8  DrivAer模型Fastback尾部的相干结构[23]及不同后背的风阻系数[24]

    Figure  8.  Flow structures of the DrivAer fastback model and the drag coefficient of a DrivAer model with different backs[23-24]

    图  9  Ahmed模型尾部不同位置处速度信号的功率谱特征[18]

    Figure  9.  The power spectral density function Eu of the hot-wire signal measured at center line in the wake[18]

    图  10  DrivAer模型仿真流场的POD分析[27]

    Figure  10.  POD analysis of flow around a DrivAer model [27]

    图  11  扰流板对Ahmed模型两侧流向涡的控制[28]

    Figure  11.  The flap controls the flow separation over the rear slant [28]

    图  12  阻力系数随绕流板倾斜角度的变化[28]

    Figure  12.  Evolution of the drag of the bluff body as a function of the angle of the flap relative to the slant surface[28]

    图  13  Ahmed模型尾部进行主动射流控制[34]

    Figure  13.  Conceptual model of the flow structure under the combined actuation[34]

    图  14  采用不同湍流模型计算Ahmed模型的绕流流场[37]

    Figure  14.  Simulation of flow around the Ahmed model using different turbulence models[37]

    图  15  采用LES方法仿真分析Ahmed模型气动特征[38]

    Figure  15.  Simulation and analysis of aerodynamic characteristics of Ahmed model by LES method and the plane used to visualize the flow[38]

    图  16  后视镜对车窗表面压力系数分布的影响[23]

    Figure  16.  Effect of rearview mirror on distribution of the pressure coefficient at the side window[23]

    图  17  车轮转动状态对轮仓内表面压力的影响[24]

    Figure  17.  Pressure distribution inside the front wheel housing [24]

    图  18  阻塞比AM/AN对DrivAer模型气动力测试的影响[43]

    Figure  18.  Effect of jet expansion on the drag coefficient ΔCD for different blockage ratios AM/AN [43]

    图  19  基于DrivAer模型模拟轿车超越卡车过程中两车周围流场的变化[51]

    Figure  19.  Instantaneous velocity field when a car overtaking truck based on DrivAer model[51]

    图  20  不同车轮构型和转动状态下的70 dB等噪声面分布[52]

    Figure  20.  Acoustic power sound sources at 70 dB with wheel configurations and rotation states[52]

    图  21  冷却器泄漏对冷却器周围流场和底盘高压力系数分布的影响[25]:A.进气格栅封闭, B.进气格栅开启(冷却器无泄漏), C.进气格栅开启(冷却器泄漏)

    Figure  21.  Velocity magnitude in the center plane and pressure coefficient distribution of the three simulated setups[25]

    表  1  汽车空气动力学物理模型列表

    Table  1.   List of automotive aerodynamic physical models

    模型名称 设计机构 设计时间
    Ahmed[1] 德国宇航中心 1984
    SAE[2] 意大利Pininfarina风洞 1999
    NRSCC/SAE[3] 加拿大国家研究委员会 1996
    Rover[4] 英国路虎汽车公司 1997
    Davis[5] 英国帝国理工学院 1984
    DOCTON[6] 英国杜伦大学 1998
    Ford Block[7] 美国福特汽车公司 1999
    GM[8] 美国通用汽车公司 2001
    ASMO[9] 德国Daimler汽车公司 2000
    RMIIT[10] 澳大利亚RMIT大学 2001
    Chrysler[11] 美国Chrysler风洞 1994
    MIRA[12] 英国MIRA风洞 1986
    FORD[13] 美国福特汽车公司 1994
    MIRA / ROVER[14] 英国MIRA & 路虎汽车 1994
    CNR[15] 意大利Pininfarina风洞 1982
    SAE/ PININFARINA[16] 意大利Pininfarina风洞 1998
    DrivAer[17] 慕尼黑工业大学 2011
    下载: 导出CSV
  • [1] AHMED S R, RAMM G, FALTIN G. Some salient features of the time-averaged ground vehicle wake[R]. SAE Technical Paper 840300, 1984.
    [2] LINDENER N. Aerodynamic testing of road vehicles in open jet wind tunnels[R]. SAE SP-1465, 1999.
    [3] COOPER K R. Closed-test-section wind tunnel blockage corrections for road vehicles[R]. SAE SP-1176, 1996.
    [4] HOWELL J, HICKMAN D. The influence of ground simulation on the aerodynamics of a simple car model[R]. SAE Technical Paper 970134, 1997.
    [5] BEARMAN P W. Some observations on road vehicle wakes[R]. SAE Technical Paper 840301, 1984.
    [6] SIMS-WILLIAMS D B, DOMINY R G. Experimental investigation into unsteadiness and instability in passenger car aerodynamics[R]. SAE Technical Paper 980391, 1998.
    [7] BARLOW J, GUTERRES R, RANZENBACH R, et al. Wake structures of rectangular bodies with radiused edges near a plane surface[R]. SAE Technical Paper 1999-01-0648, 1999.
    [8] KHALIGHI B, ZHANG S, KOROMILAS C, et al. Experimental and computational study of unsteady wake flow behind a bluff body with a drag reduction device[J]. SAE Transactions, 2001, 110(1): 1209-1222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027476066
    [9] ARONSON D, BRAHIM S B, PERZON S. On the underbody flow of a simplified estate[R]. SAE Technical Paper 2000-01-0485, 2000.
    [10] ALAM F, WATKINS S, ZIMMER G, et al. Effects of vehicle A-pillar shape on local mean and time-varying flow properties[R]. SAE Technical Paper 2001-01-1086, 2001.
    [11] ROMBERG G F, GUNN J A, LUTZ R G. Thechrysler 3/8-scale pilot wind tunnel[J]. SAE Transactions, 1994, 103(1): 490-513.
    [12] CARR G, STAPLEFORD W. Blockage effects in automotive wind-tunnel testing[R]. SAE Technical Paper 860093, 1986.
    [13] WILLIAMS J, QUINLAN W J, HACKETT J E, et al. A calibration study of CFD for automotive shapes and CD[J]. SAE Transactions, 1994, 103(1): 308-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0210682103
    [14] LE GOOD M G, GARRY P K. On the use of reference models in automotive aerodynamics[R]. SAE Technical Paper 2004-01-1308, 2004.
    [15] COGOTTI A. Wake surveys of different car-body shapes with coloured isopressure maps[R]. SAE Technical Paper 840299, 1984.
    [16] COGOTTI A. A parametric study on the ground effect of a simplified car model[J]. SAE Transactions, 1998, 107(1): 180-204.
    [17] THEISSEN P, WOJCIAK J, HEULER K, et al. Experimental investigation of unsteady vehicle aerodynamics under time-dependent flow conditions-Part 1[R]. SAE Technical Paper 2011-01-0177, 2011.
    [18] ZHANG B F, ZHOU Y, TO S. Unsteady flow structures around a high-drag Ahmed body[J]. Journal of Fluid Mechanics, 2015, 777(1): 291-326. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=FLM777\FLM\FLM777\S0022112015003328h.xml
    [19] SCHVTZ T, DES AUTOMOBILS H A. Stromungsmechanik, Warmetechnik, Fahrdynamik, Komfort[M]. Wiesbaden: Springer Vieweg, 2013.
    [20] MAYER W, WICKERN G. The new Audi A6/A7 family-aerodynamic development of different body types on one platform[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2011, 4(1): 197-206. http://cn.bing.com/academic/profile?id=2dcc205cf7d84995976ac7e8e38e7994&encoded=0&v=paper_preview&mkt=zh-cn
    [21] ZHANG Y C, ZHANG J T, WU K G, et al. Aerodynamic characteristics of MIRA fastback model in experiment and CFD[J]. International Journal of Automotive Technology, 2019, 20(4): 723-737. http://cn.bing.com/academic/profile?id=ee703d1dffd3e5891be429c16a31ed62&encoded=0&v=paper_preview&mkt=zh-cn
    [22] 张英潮, 曹惠南, 朱会. MIRA阶背式模型的瞬态流动结构分析[J].湖南大学学报, 2019, 46(8): 50-57. http://d.old.wanfangdata.com.cn/Periodical/hndxxb201908007

    ZHANG Y C, CAO H N, ZHU H. Instantaneous flow structure analysis of MIRA notchback model[J]. Journal of Hunan University(Natural Sciences), 2019, 46(8): 50-57. http://d.old.wanfangdata.com.cn/Periodical/hndxxb201908007
    [23] HEFT A I, INDINGER T, ADAMS N A. Experimental and numerical investigation of the DrivAer model[C]//Proc of the ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. 2012.
    [24] MACK S, INDINGER T, ADAMS N A, et al. The interior design of a 40% scaled DrivAer body and first experimental results[C]// Proc of the ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. 2012.
    [25] MATSUMOTO D, HAAG L, INDINGER T. Investigation of the unsteady external and underhood airflow of the DrivAer model by Dynamic Mode Decomposition Methods[J]. International Journal of Automotive Engineering, 2017, 8(2): 55-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_4264662
    [26] PEICHL M, MACK S, INDINGER T, et al. Numerical investigation of the flow around a generic car using dynamic mode decomposition[C]// Proc of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. 2014.
    [27] DOLCI V, ARINA R. Proper orthogonal decomposition as surrogate model for aerodynamic optimization[J]. International Journal of Aerospace Engineering, 2016, 2016: 1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004716828
    [28] BEAUDOIN J F, AIDER J L. Drag and lift reduction of a 3D bluff body using flaps[J]. Experiments in Fluids, 2008, 44(4): 491. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a867163f48b72948d9bb63948efaa72
    [29] WANG H F, ZHOU Y, ZOU C, et al. Aerodynamic drag reduction of an Ahmed body based on deflectors[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 148: 34-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a6c2dd46be03f619f0d43174f6d78e11
    [30] AIDER J L, BEAUDOIN J F O, WESFREID J E. Drag and lift reduction of a 3D bluff-body using active vortex generators[J]. Experiments in Fluids, 2010, 48(5): 771-789. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f9555642aa42411f3c8b332a74ea1687
    [31] ROUMÉAS M, GILLIÉRON P, KOURTA A. Analysis and control of the near-wake flow over a square-back geometry[J]. Computers & Fluids, 2009, 38(1): 60-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1a827032168bb5ca96e887f89df929d5
    [32] JOSEPH P, AMANDOLESE X, AIDER J L. Drag reduction on the 25 slant angle Ahmed reference body using pulsed jets[J]. Experiments in Fluids, 2012, 52(5): 1169-1185. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b51591b69a8082e2f9e91a9834f4db9a
    [33] JOSEPH, PIERRIC, AMANDOLESE, et al. Flow control using MEMS pulsed micro-jets on the Ahmed body[J]. Experiments in Fluids, 2013, 54(1): 1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=854f9f487a591e40057fa30ceae013e9
    [34] ZHANG B, LIU K, ZHOU Y, et al. Active drag reduction of a high-drag Ahmed body based on steady blowing[J]. Journal of Fluid Mechanics, 2018, 856: 351-396. http://cn.bing.com/academic/profile?id=9efd13ac7894491acae952871b129b94&encoded=0&v=paper_preview&mkt=zh-cn
    [35] 亚森江·白克力. MIRA车型非光滑表面气流扰动减阻效能研究[D].杭州: 浙江大学, 2015.

    BAIKELI Y. Research on the aerodynamic drag reduction efficiency of MIRA model with non-smooth surface based on flow dicturbance[D]. Hangzhou: Zhejiang University, 2015.
    [36] SOARES R F, KNOWLES A, OLIVES S G A, et al. On the aerodynamics of an enclosed-wheel racing car: an assessment and proposal of add-on devices for a fourth, high-performance configuration of the DrivAer model[R]. SAE Technical Paper 2018-01-0725, 2018.
    [37] HEFT A, INDINGER T, ADAMS N. Investigation of unsteady flow structures in the wake of a realistic generic car model[C]// Proc of the 29th AIAA Applied Aerodynamics Conference. 2011.
    [38] ÖSTH J, NOACK B R, KRAJNOVIĆ S, et al. On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body[J]. Journal of Fluid Mechanics, 2014, 747: 518-544. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=FLM747\FLM\FLM747\S0022112014001682h.xml
    [39] GUILMINEAU E. Numerical simulations of flow around a realistic generic car model[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2014, 7(2): 646-653. http://cn.bing.com/academic/profile?id=a0a9ae6a59cfbbac6993a83e80306c2f&encoded=0&v=paper_preview&mkt=zh-cn
    [40] FORBES D C, PAGE G J, PASSMORE M A, et al. A fully coupled, 6 degree-of-freedom, aerodynamic and vehicle handling crosswind simulation using the DrivAer model[R]. SAE Paper 2016-01-1601, 2016.
    [41] STOLL D, WIEDEMANN J. Active crosswind generation and its effect on the unsteady aerodynamic vehicle properties determined in an open jet wind tunnel[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2018, 11(5): 429-446. http://cn.bing.com/academic/profile?id=b2604b8d12b945897ca127029b446bbc&encoded=0&v=paper_preview&mkt=zh-cn
    [42] JOSEFSSON E, HAGVALL R, URQUHART M, et al. Numerical analysis of aerodynamic impact on passenger vehicles during cornering[R]. SAE Technical Paper 2018-37-0014, 2018.
    [43] COLLIN C, MACK S, INDINGER T, et al. A numerical and experimental evaluation of open jet wind tunnel interferences using the DrivAer reference model[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2016, 9(2): 657-679. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a667fb071e58eeb01e973e1f041d8f9a
    [44] RANZENBACH R, BARLOW J B, ESMAILI H. Practical application of the two-variable blockage correction method to automobile shapes[J]. SAE Transactions, 2001, 110(1): 695-707. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027477795
    [45] HOFFMAN J, MARTINDALE B, ARNETTE S, et al. Effect of test section configuration on aerodynamic drag measurements[J]. SAE Transactions, 2001, 110(1): 680-694. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027475736
    [46] VON SCHULZ-HAUSMANN F K, VAGT J D. Influence of test-section length and collector area on measurements in a 3/4-open-jet automotive wind tunnels[R]. SAE Technical Paper 880251, 1988.
    [47] HOFFMAN J, MARTINDALE B, ARNETTE S, et al. Development of lift and drag corrections for open jet wind tunnel tests for an extended range of vehicle shapes[R]. SAE Technical Paper 2003-01-0934, 2003.
    [48] CARR G W. A comparison of the ground-plane-suction and moving-belt ground-representation techniques[R]. SAE Technical Paper 880249, 1988.
    [49] BERNDTSSON A, ECKERT W T, MERCKER E. The effect of groundplane boundary layer control on automotive testing in a wind tunnel[J]. SAE Transactions, 1988, 97(1): 215-230. http://cn.bing.com/academic/profile?id=aa73c79eb702f43bcefa9006c7cde1e1&encoded=0&v=paper_preview&mkt=zh-cn
    [50] AZIM A F A. An experimental study of the aerodynamic interference between road vehicles[R]. SAE Technical Paper 940422, 1994.
    [51] JAKIRLIC S, KUTEJ L, BASARA B, et al. Scale-resolving simulation of an 'on-road' overtaking maneuver involving model vehicles[R]. SAE Technical Paper 2018-01-0706, 2018.
    [52] RINGWALL E. Aeroacoustic sound sources around the wheels of a passenger car[D]. Gõteborg: Chalmers University of Technology, 2017.
    [53] LAFONT T, HORAK J, D'AMICO R, et al. Passive treatment solutions for the reduction of vehicle exterior tire noise[R]. SAE Technical Paper 2018-01-1571, 2018.
    [54] SIMMONDS N, TSOUTSANIS P, DRIKAKIS D, et al. Full vehicle aero-thermal cooling drag sensitivity analysis for various radiator pressure drops[R]. SAE Technical Paper 2016-01-1578, 2016.
    [55] 廖磊.车轮溅水及其对车身表面污染的仿真研究[D].长春: 吉林大学, 2014.

    LIAO L. Numerical research on wheel spray and related body soiling[D]. Changchun: Jilin University, 2014.
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  613
  • HTML全文浏览量:  540
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-25
  • 修回日期:  2019-08-04
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日