留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水翼叶梢涡空化实验研究进展

刘玉文 徐良浩 宋明太 顾湘男 彭晓星

刘玉文, 徐良浩, 宋明太, 等. 水翼叶梢涡空化实验研究进展[J]. 实验流体力学, 2020, 34(5): 1-11. doi: 10.11729/syltlx20190083
引用本文: 刘玉文, 徐良浩, 宋明太, 等. 水翼叶梢涡空化实验研究进展[J]. 实验流体力学, 2020, 34(5): 1-11. doi: 10.11729/syltlx20190083
LIU Yuwen, XU Lianghao, SONG Mingtai, et al. Experimental research progress of hydrofoil tip vortex cavitation[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 1-11. doi: 10.11729/syltlx20190083
Citation: LIU Yuwen, XU Lianghao, SONG Mingtai, et al. Experimental research progress of hydrofoil tip vortex cavitation[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 1-11. doi: 10.11729/syltlx20190083

水翼叶梢涡空化实验研究进展

doi: 10.11729/syltlx20190083
基金项目: 

国家自然科学基金 11772305

国家自然科学基金 91852101

详细信息
    作者简介:

    刘玉文(1988-), 男, 山东日照人, 硕士, 工程师。研究方向:推进器空化性能研究。通信地址:江苏省无锡市滨湖区山水东路222号中国船舶科学研究中心(214082)。E-mail:wsliuyuwen@163.com

    通讯作者:

    彭晓星  E-mail: henrypxx@163.com

  • 中图分类号: TV131.3+2

Experimental research progress of hydrofoil tip vortex cavitation

  • 摘要: 针对螺旋桨、水轮机以及导管桨等叶片的梢涡空化现象,国内外学者开展了一系列相关实验研究。本文对梢涡空化起始(或初生)、发展与溃灭(或消失)等3个阶段的实验研究进展及成果进行综述,梳理未来的研究方向及关键问题,为梢涡空化研究提供参考。关于梢涡空化初生问题,基于旋涡理论模型及流场测量技术,对不同翼型的梢涡结构特征进行分析,根据空化发生的相变条件(即气核、低压以及低压作用时间),初步认识了梢涡空化发生机理;关于梢涡空化发展问题,以辐射噪声骤增为典型特征,借助空泡图像的高速摄影及声学信号同步采集技术,研究梢涡空化形态及对应的辐射噪声特征,通过进一步解释"涡唱"现象,深入认识了梢涡空化发生机理;关于梢涡空化溃灭问题,溃灭发生位置一般远离桨叶等水力机械,对结构物的振动与剥蚀影响很小,本文不作详细阐述。此外,对梢涡空化初生的准确预报,一直是相关理论研究成果应用于工程实际所面临的一个重要问题。归根结底,主要是影响梢涡空化关键参数(比如载荷、雷诺数和水质等)的尺度效应问题和梢涡空化初生预报公式逐渐完善的问题。
  • 图  1  螺旋桨梢涡空化[4]

    Figure  1.  Tip vortex cavitation on propeller[4]

    图  2  涡强和涡核半径沿梢涡轴线的变化[13]

    Figure  2.  Variation of strength and radius of tip vortex along its axial direction[13]

    图  3  梢涡空化初生位置[2]

    Figure  3.  The incipient location of tip vortex cavitation[2]

    图  4  3种播核条件下的气核谱[26]

    Figure  4.  Bubble nuclei distribution measured in cavity mechanism tunnel under three seed conditions[26]

    图  5  小型多功能高速空泡水筒

    Figure  5.  Cavity mechanism tunnel

    图  6  采用2D-3C PIV测量梢涡流场

    Figure  6.  Tip leakage vortex flow field measurement by 2D-3C PIV

    图  7  梢涡平均涡量ω及流向速度vx分布(PIV)[27]

    Figure  7.  Time averaged vorticity and velocity around tip vortex measured by PIV[27]

    图  8  不同截面处梢涡流向速度vx与切向速度vz分布(LDV)[27]

    Figure  8.  Axial and tangential velocity distribution around tip vortex measured by LDV for different cross sections[27]

    图  9  不同间隙宽度下的梢涡流场流向速度vx分布[28]

    Figure  9.  Velocity of inflow direction distribution around tip clearance vortex measured by PIV for different clearance widths[28]

    图  10  高速摄像获得的梢涡空化初生位置

    Figure  10.  Incipient position of tip vortex cavitation captured by high speed camera

    图  11  不同空化数下的梢涡空化形态[27]

    Figure  11.  Tip vortex cavity for different cavitation indices[27]

    图  12  梢隙涡空化形态随间隙的变化[34]

    Figure  12.  Tip clearance vortex cavity for different clearance widths[34]

    图  13  总声压级、梢涡空化形态随空化数的变化

    Figure  13.  Over all sound pressure level and tip vortex cavity for different cavitation indices

    图  14  涡唱中的单周期梢涡空化形态变化图

    Figure  14.  Tip vortex cavity variation during one period in vortex sing

    图  15  梢涡空化涡唱前后的噪声频谱

    Figure  15.  The frequency spectrum of cavitation noise with and without vortex sing

    图  16  3个尺度的水翼实验安装图[43]

    Figure  16.  Sketch of hydrofoil installation for three different scales[43]

    图  17  不同迎角下梢涡初生空化数随雷诺数的变化曲线[43]

    Figure  17.  Tip vortex cavitation incipient index variation with Reynolds index[43]

    图  18  不同迎角下的梢涡初生空化数拟合曲线[43]

    Figure  18.  Fitted curve of tip vortex cavitation incipient index variation with Reynolds index for different angles of attack[43]

    图  19  雷诺数对梢涡初生空化数的影响[26]

    Figure  19.  Influence of Reynolds number on tip vortex cavitation incipient index[26]

    图  20  升力系数对初生空化数的影响[26]

    Figure  20.  Influence of lift coefficient on tip vortex cavitation incipient index[26]

    图  21  气核对梢涡初生空化数的影响[26]

    Figure  21.  Influence of bubble nuclei on tip vortex cavitation incipient index[26]

  • [1] ARNDT R E A. Cavitation in fluid machinery and hydraulic structures[J]. Annual Review of Fluid Mechanics, 1981, 13(1):273-326. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=294b4bafb6ef7b32fe609e80fcbf07ae
    [2] ARNDT R E A. Cavitation in vertical flows[J]. Annual Review of Fluid Mechanics, 2002, 34(1):143-175.
    [3] 潘森森, 彭晓星.空化机理[M].北京:国防工业出版社, 2013:30-89.

    PAN S S, PENG X X. Physical mechanism of cavitation[M]. Beijing:National Defense Industry Press, 2013:30-89.
    [4] KORKUT E, ATLAR M. On the importance of the effect of turbulence in cavitation inception tests of marine propellers[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2002, 458(2017):29-48. doi: 10.1098/rspa.2001.0852
    [5] ZHANG L X, ZHANG N, PENG X X, et al. A review of studies of mechanism and prediction of tip vortex cavitation inception[J]. Journal of Hydrodynamics, 2015, 27(4):488-495. doi: 10.1016/S1001-6058(15)60508-X
    [6] ARNDT R E A, KELLER A P. Water quality effects on cavitation inception in a trailing vortex[J]. Journal of Fluids Engineering, 1992, 114(3):430-438. http://ci.nii.ac.jp/naid/30037587761
    [7] ARNDT R E A, MAINES B H. Nucleation and bubble dynamics in vortical flows[J]. Journal of Fluids Engineering, 2000, 122(3):488-493. doi: 10.1115/1.1286994
    [8] ARNDT R E A, MAINES B H. Viscous effects in tip vortex cavitation and nucleation[R]. SAFL Technical Paper 397-Series A, 1994.
    [9] UBEROI M S, SHIVAMOGGI B K, CHEN S S. Axial flow in trailing line vortices[J]. Physics of Fluids, 1979, 22(2):214-217. doi: 10.1063/1.862570
    [10] BATCHELOR G K. Axial flow in trailing line vortices[J]. Journal of Fluid Mechanics, 1964, 20(4):645-658. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=35361a04e6a04bd013831039e8749bc8
    [11] FRUMAN D H, CERRUTTI P, PICHON T, et al. Effect of hydrofoil planform on tip vortex roll-up and cavitation[J]. Journal of Fluids Engineering, 1995, 117(1):162-169. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fbdf5a62b4ebb97e7517cd50aa6637ee
    [12] FRUMAN D H. Recent progress in the understanding and prediction of tip vortex on a rectangular hydrofoil[C]//Proc of the 2nd International Symposium on Cavitation. 1994.
    [13] FRUMAN D H, DUGUE C, PAUCHET A, et al. Tip vortex roll-up and cavitation[C]//Proc of the 19th Symposium on Naval Hydrodynamic. 1992.
    [14] FRUMAN D H, PICHON T, CERRUTTI P. Effect of a drag-reducing polymer solution ejection on tip vortex cavitation[J]. Journal of Marine Science and Technology, 1995, 1(1):13-23. doi: 10.1007/BF01240009
    [15] BOULON O, CALLENAERE M, FRANC J, et al. An experimental insight into the effect of confinement on tip vortex cavitation of an elliptical hydrofoil[J]. Journal of Fluid Mechanics, 1999, 390:1-23. doi: 10.1017/S002211209900525X
    [16] KATZ J, GALDO J B. Effect of roughness on rollup of tip vortices on a rectangular hydrofoil[J]. Journal of Aircraft, 1989, 26(3):247-253. doi: 10.2514/3.45753
    [17] STINEBRING D R, FARRELL K J, BILLET M L. The structure of a three-dimensional tip vortex at high Reynolds numbers[J]. Journal of Fluids Engineering, 1991, 113(3):496-503. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000113000003000496000001&idtype=cvips&gifs=Yes
    [18] RAN B, KATZ J. Pressure fluctuations and their effect on cavitation inception within water jets[J]. Journal of Fluid Mechanics, 1994, 262:223-263. doi: 10.1017/S0022112094000492
    [19] SOUDERS W G, PLATZER G P. Tip vortex cavitation characteristics and delay of inception on a three-dimensional hydrofoil[R]. DTNSRDC-81/007, 1981.
    [20] BRIANÇON-MARJOLLET L, MERLE L. Inception, develop-ment, and noise of a tip vortex cavitation[C]//Proc of the 21st Symposium on Naval Hydrodynamic. 1996.
    [21] MAINES B H, ARNDT R E A. Tip vortex formation and cavitation[J]. Journal of Fluids Engineering, 1997, 119(2):413. http://www.researchgate.net/publication/277499680_Tip_Vortex_Formation_and_Cavitation
    [22] FRANC J P, MICHEL J M. Fundmentals of cavitation[M]. Dordrecht, Netherlands: Fluwer Academic Publishers, 2004.
    [23] 姜树海.含气量对梢涡初生空化的影响[J].水利水运科学研究, 1989(2):53-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002790038

    JIANG S H. Influence of gas content on tip vortex cavitation inception[J]. Scientific Research on Water Conservancy and Transportation, 1989(2):53-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002790038
    [24] 彭晓星, 王力, 潘森森.水中空气含量对旋涡空化的影响[J].水动力学研究与进展, 1989, 4(4):60-68. http://www.cqvip.com/QK/94099X/19894/140627.html

    PENG X X, WANG L, PAN S S. Air content effect on the vortex cavitation[J]. Journal of Hydrodynamics, 1989, 4(4):60-68. http://www.cqvip.com/QK/94099X/19894/140627.html
    [25] ZHANG L X, CHEN L Y, SHAO X M. The migration and growth of nuclei in an ideal vortex flow[J]. Physics of Fluids, 2016, 28(12):123305. doi: 10.1063/1.4972275
    [26] PENG X X, XU L H, CAO Y T. The study of tip vortex flow and cavitation inception on an elliptical hydrofoil[C]//Proc of the 5th International Symposium on Marine Propulsion. 2017: 590-595.
    [27] PENG X X, XU L H, LIU Y W, et al. Experimental measurement of tip vortex flow field with/without cavitation in an elliptic hydrofoil[J]. Journal of Hydrodynamics, 2017, 29(6):939-953. doi: 10.1016/S1001-6058(16)60808-9
    [28] 刘玉文.梢隙流动及梢隙空化的实验研究[D].无锡: 中国船舶科学研究中心, 2017.

    LIU Y W. Experimental research of tip leakage flow and cavitation[D]. Wuxi: China Ship Scientific Research Center, 2017.
    [29] 潘森森.空化核与空化起始[J].中国造船, 1989, 30(3):3-16. http://www.cnki.com.cn/Article/CJFDTotal-ZGZC198903000.htm

    PAN S S. Cavitation nuclei and cavitation inception[J]. Ship Building of China, 1989, 30(3):3-16. http://www.cnki.com.cn/Article/CJFDTotal-ZGZC198903000.htm
    [30] CHAHINE G L. Nuclei effects on cavitation inception and noise[C]//Proc of the 25th Symposium on Naval Hydrodynamics. 2004.
    [31] BOULON O, FRANC J P, MICHEL J M. Tip vortex cavitation on an oscillating hydrofoil[J]. Journal of Fluids Engineering, 1997, 119(4):752-758. doi: 10.1115/1.2819494
    [32] ARAKERI V H, HIGUCHI H, ARNDT R E A. A model for predicting tip vortex cavitation characteristics[J]. Journal of Fluids Engineering, 1988, 110(2):190-193. doi: 10.1115/1.3243533
    [33] ARNDT R E A, ARAKERI V H, HIGUCHI H. Some observations of tip-vortex cavitation[J]. Journal of Fluid Mechanics, 1991, 229:269-289. doi: 10.1017/S0022112091003026
    [34] 刘玉文, 徐良浩, 张国平, 等.梢隙流动空化初生及空化形态观测研究[J].水动力学研究与进展:A辑, 2017, 32(6):671-679. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdlxyjyjz201706002

    LIU Y W, XU L H, ZHANG G P, et al. Observation andresearch onthe cavitation inception and cavitation structure of tip leakage flow[J]. Journal of Hydrodynamics, 2017, 32(6):671-679. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdlxyjyjz201706002
    [35] SONG M T, XU L H, PENG X X, et al. An acoustic approach to determine tip vortex cavitation inception for an elliptical hydrofoil considering nuclei-seeding[J]. International Journal of Multiphase Flow, 2017, 90:79-87. doi: 10.1016/j.ijmultiphaseflow.2016.12.008
    [36] HIGUCHI H, ARNDT R E A, ROGERS M F. Characteristics of tip vortex cavitation noise[J]. Journal of Fluids Engineering, 1989, 111(4):495-501. doi: 10.1115/1.3243674
    [37] MAINES B H, ARNDT R E A. The case of the singing vortex[J]. Journal of Fluids Engineering, 1997, 119(2):271-276. doi: 10.1115/1.2819130
    [38] 姜树海.梢涡的初生空化及其发生位置[J].水动力学研究与进展, 1989, 4(1):13-22. http://www.cnki.com.cn/Article/CJFDTotal-SDLJ198901002.htm

    JIANG S H. Estimation of tip vortex cavitation inception and its location[J]. Journal of Hydrodynamics, 1989, 4(1):13-22. http://www.cnki.com.cn/Article/CJFDTotal-SDLJ198901002.htm
    [39] HSIAO C T, CHAHINE G L. Scaling of tip vortex cavitation inception for a marine open propeller[C]//Proc of the 27th Symposium on Naval Hydrodynamics. 2008.
    [40] STROBL T, HUBER R, KELLER A P. Cavitation scale effects and case studies on cavitation model tests[J]. International Journal on Hydropower & Dams, 2005, 12(1):86-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=103ac74bef1d51b89e9a0ff591967ecb
    [41] KUIPER G, VAN TERWISGA T J C, ZONDERVAN G J, et al. Cavitation inception tests on a systematic series of two-bladed propellers[C]//Proc of the 26th Symposium on Naval Hydrodynamics. 2006.
    [42] SONG M T, XU L H, PENG X X, et al. Acoustic modeling of the singing vortex and its sound signatures[J]. International Journal of Multiphase Flow, 2018, 99:205-212. doi: 10.1016/j.ijmultiphaseflow.2017.10.007
    [43] 顾湘男, 曾志波, 彭晓星, 等.三维水翼梢涡空泡和片空泡的雷诺数影响试验研究[J].中国造船, 2017, 58(1):28-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgzc201701004

    GU X N, ZENG Z B, PENG X X, et al. Experimental investigation of the scale effect of Reynolds number for tip vortex cavitation and sheet cavitation around a three-dimensional hydrofoil[J]. Ship Building of China, 2017, 58(1):28-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgzc201701004
  • 加载中
图(21)
计量
  • 文章访问数:  189
  • HTML全文浏览量:  111
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-26
  • 修回日期:  2019-11-12
  • 刊出日期:  2020-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日