留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图像处理的低速横流中液体射流轨迹提取方法研究

兰天 孔令真 陈家庆 王奎升

兰天, 孔令真, 陈家庆, 等. 基于图像处理的低速横流中液体射流轨迹提取方法研究[J]. 实验流体力学, 2020, 34(4): 94-101. doi: 10.11729/syltlx20190089
引用本文: 兰天, 孔令真, 陈家庆, 等. 基于图像处理的低速横流中液体射流轨迹提取方法研究[J]. 实验流体力学, 2020, 34(4): 94-101. doi: 10.11729/syltlx20190089
LAN Tian, KONG Lingzhen, CHEN Jiaqing, et al. Study on extraction method of liquid jet trajectory in low-speed air crossflow based on image processing[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 94-101. doi: 10.11729/syltlx20190089
Citation: LAN Tian, KONG Lingzhen, CHEN Jiaqing, et al. Study on extraction method of liquid jet trajectory in low-speed air crossflow based on image processing[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 94-101. doi: 10.11729/syltlx20190089

基于图像处理的低速横流中液体射流轨迹提取方法研究

doi: 10.11729/syltlx20190089
基金项目: 

国家自然科学基金青年基金 21808015

北京市高水平创新团队建设计划项目 IDHT20170507

详细信息
    作者简介:

    兰天(1995-),男,陕西陇县人,硕士研究生。研究方向:气液两相流,新型化工设备设计。通信地址:北京市朝阳区北三环东路15号北京化工大学机电工程学院(100029)。E-mail:reignlan@163.com

    通讯作者:

    孔令真  E-mail: konglingzhen@bipt.edu.cn

    王奎升  E-mail: wangks@mail.buct.edu.cn

  • 中图分类号: TQ027.3

Study on extraction method of liquid jet trajectory in low-speed air crossflow based on image processing

  • 摘要: 为研究低速横流条件下不同工况液体射流破碎的轨迹特征和影响因素,采用高速摄像仪拍摄射流破碎图像,结合图像处理技术提出针对低速横流情况下液体射流破碎弯曲轨迹的提取方法。该方法首先采用直方图均衡化对灰度化后的原始图像进行增强处理,然后利用最佳直方图熵法(KSW法)及传统遗传算法对图像进行二阈值分割,最后结合Sobel算子和凸包算法对射流轮廓进行检测提取以获得射流轨迹的数据点集。对不同工况下典型射流破碎模式的轨迹提取及非线性拟合结果表明,所提出的方法能够准确提取液体射流轨迹,实现低速横流作用下不同破碎模式的轨迹提取,并且通过非线性拟合得到的射流破碎经验公式可以准确预测射流弯曲轨迹。
  • 图  1  横流液体射流实验平台示意图

    Figure  1.  Experimental setup for liquid jet in air crossflow

    图  2  测量段和喷嘴结构示意图

    Figure  2.  Sketches of the test section and the nozzle geometry

    图  3  液体射流破碎结构示意图

    Figure  3.  Schematic diagram of liquid jet breakup

    图  4  液体射流轨迹提取方法框图

    Figure  4.  Diagram of liquid jet trajectory extraction method

    图  5  图像增强处理结果

    Figure  5.  Image of enhancement processing

    图  6  图像像素直方图和KSW二阈值结果

    Figure  6.  Pixel value histogram of image and KSW thresholding

    图  7  阈值分割后图像

    Figure  7.  Image of threshold segmentation

    图  8  边缘轮廓检测图像

    Figure  8.  Image of the edge detection

    图  9  轮廓点提取后图像

    Figure  9.  Image of trajectory point extraction

    图  10  多帧图像的轮廓点提取对比

    Figure  10.  Comparison of multi-frame images trajectory point extraction

    图  11  不同破碎模式下图像处理结果

    Figure  11.  Image processing results under different breakup modes

    图  12  q=41.33、Wej=60.82工况下射流轨迹拟合结果

    Figure  12.  Jet penetration fitting result under q=41.33, Wej=60.82

    图  13  不同工况下射流轨迹拟合结果

    Figure  13.  Jet penetration fitting result under various conditions

    表  1  实验工况

    Table  1.   Test conditions

    实验参数 参数值
    液体射流速度uj/(m·s-1) 0~10
    液体密度ρj/(kg·m-3) 997
    横向气流速度ug/(m·s-1) 5~30
    气体密度ρg/(kg·m-3) 1.17
    表面张力σ/(N·m-1) 0.0709
    液/气动量通量比q=ρjvj2/ρgug2 2~400
    射流Reynolds数Rej=ρjvjdj/μj 781~6837
    液体Weber数Wej=ρjvj2dj/σ 20~1000
    气体Weber数Weg=ρgug2dj/σ 0~20
    下载: 导出CSV
  • [1] 吴里银, 张扣立, 李晨阳, 等.超声速气流中液体横向射流空间振荡分布建模[J].实验流体力学, 2018, 32(4):20-30. http://www.syltlx.com/CN/abstract/abstract11115.shtml

    WU L Y, ZHANG K L, LI C Y, et al. Model for three-dimensional distribution of liquid fuel in supersonic crossflows[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4):20-30. http://www.syltlx.com/CN/abstract/abstract11115.shtml
    [2] ESLAMIAN M, AMIGHI A, ASHGRIZ N. Atomization of liquid jet in high-pressure and high-temperature subsonic crossflow[J]. AIAA Journal, 2014, 52(7):1374-1385. doi: 10.2514/1.J052548
    [3] BHRAN A, SHOAIB A, HAMED M. Application of compact mixer technique for khalda gas dehydration plant[J]. International Journal of Engineering and Technical Research, 2016, 4(4):40-47. https://www.erpublication.org/published_paper/IJETR041580.pdf
    [4] XIAO F, WANG Z G, SUN M B, et al. Large eddy simulation of liquid jet primary breakup in supersonic air crossflow[J]. International Journal of Multiphase Flow, 2016, 87:229-240. doi: 10.1016/j.ijmultiphaseflow.2016.08.008
    [5] BROUMAND M, BIROUK M. Liquid jet in a subsonic gaseous crossflow:Recent progress and remaining challenges[J]. Progress in Energy and Combustion Science, 2016, 57:1-29. doi: 10.1016/j.pecs.2016.08.003
    [6] 林宇震, 李林, 张弛, 等.液体射流喷入横向气流混合特性研究进展[J].航空学报, 2014, 35(1):46-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201401004

    LIN Y Z, LI L, ZHANG C, et al. Progress on the mixing of liquid jet injected into a crossflow[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):46-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201401004
    [7] SONG J K, CAIN C C, LEE J G. Liquid jets in subsonic air crossflow at elevated pressure[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137(4):041502. doi: 10.1115/1.4028565
    [8] 刘静.超声速气流中横向燃油喷雾的数值模拟和实验研究[D].北京: 北京航空航天大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10006-1012023923.htm

    LIU J. Numerical and experimental investigation of fuel spray in supersonic cross flow[D]. Beijing: Beihang University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10006-1012023923.htm
    [9] AMIGHI A. Liquid jets in crossflow at elevated temperatures and pressures[D]. Toronto: University of Toronto, 2015.
    [10] 柴进.超声速来流横向射流喷雾结构及速度场的图像分析方法研究[D].长沙: 国防科学技术大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-90002-1017835345.htm

    CHAI J. Image analysis investigations on structures and velocity field of liquid jets in a supersonic crossflow[D]. Changsha: National University of Defense Technology, 2015. http://cdmd.cnki.com.cn/Article/CDMD-90002-1017835345.htm
    [11] TONCU D C, MIRZAEI M, SOLEIMANI S. Emulsified jetfuel flame characterization with image processing[J]. Journal of the Energy Institute, 2019, 92(3):567-577. doi: 10.1016/j.joei.2018.04.002
    [12] MIRZAEI M, RAFSANJANI H K. Assessment of image processing methods to characterize the precise shape of the jet head in the hypersonic jet flows[J]. Flow Measurement and Instrumentation, 2018, 64:142-154. doi: 10.1016/j.flowmeasinst.2018.10.016
    [13] MVLLER T, SÄNGER A, HABISREUTHER P, et al. Simulation of the primary breakup of a high-viscosity liquid jet by a coaxial annular gas flow[J]. International Journal of Multiphase Flow, 2016, 87:212-228. doi: 10.1016/j.ijmultiphaseflow.2016.09.008
    [14] ELSHAMY O M. Experimental investigations of steady and dynamic behavior of transverse liquid jets[D]. Cincinnati: University of Cincinnati, 2007.
    [15] 刘刚. MATLAB数字图像处理[M].北京:机械工业出版社, 2010. https://max.book118.com/html/2018/0223/154393257.shtm
    [16] WU W, YANG X M, LI H, et al. A novel scheme for infrared image enhancement by using weighted least squares filter and fuzzy plateau histogram equalization[J]. Multimedia Tools and Applications, 2017, 76(23):24789-24817. doi: 10.1007/s11042-017-4643-8
    [17] 于霞霞.基于并行模拟退火遗传算法的二维熵多阈值分割[D].武汉: 武汉理工大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10497-1018805739.htm

    YU X X. The multi-dimensional double-entropy threshold segmentation based on parallel genetic simulated annealing algorithm[D]. Wuhan: Wuhan University of Technology, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10497-1018805739.htm
    [18] PUN T. A new method for grey-level picture thresholding using the entropy of the histogram[J]. Signal Processing, 1980, 2(3):223-237. doi: 10.1016/0165-1684(80)90020-1
    [19] 种劲松, 周孝宽, 王宏琦.基于遗传算法的最佳熵阈值图像分割法[J].北京航空航天大学学报, 1999, 25(6):747. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb199906031

    CHONG J S, ZHOU X K, WANG H Q. Entropic thresholding method based on genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(6):747. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb199906031
    [20] SAMBANDAM R K, JAYARAMAN S. Self-adaptive dragonfly based optimal thresholding for multilevel segmentation of digital images[J]. Journal of King Saud University-Computer and Information Sciences, 2018, 30(4):449-461. doi: 10.1016/j.jksuci.2016.11.002
    [21] 李锋, 阚建霞.基于Sobel算子的图像快速二维最大熵阈值分割算法[J].计算机科学, 2015, 42(s1):209-210, 220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjkx2015z1050

    LI F, KAN J X. Fast two-dimensional maximum entropy threshold segmentation method based on sobel operator[J]. Computer Science, 2015, 42(s1):209-210, 220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjkx2015z1050
    [22] WU P K, KIRKENDALL K, FULLER R, et al. Breakupprocesses of liquid jets in subsonic crossflows[R]. AIAA-1996-3024, 1996.
    [23] MATHUR N, MATHUR S, MATHUR D. A novel approach to improve sobel edge detector[J]. Procedia Computer Science, 2016, 93:431-438. doi: 10.1016/j.procs.2016.07.230
    [24] 蔺东杰.街面围堵系统中二维凸包算法的研究[D].开封: 河南大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10475-1017227335.htm

    LIN D J. Research on two-dimensional convex hull algorithm in street containment system[D]. Kaifeng: Henan University, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10475-1017227335.htm
    [25] VICH G, LEDOUX M. Investigation of a liquid jet in a subsonic cross-flow[J]. International Journal of Fluid Mechanics Research, 1997, 24(1-3):1-12. doi: 10.1615/InterJFluidMechRes.v24.i1-3.10
    [26] BIROUK M, IYOGUN C O, POPPLEWELL N. Role of viscosity on trajectory of liquid jets in a cross-airflow[J]. Atomization and Sprays, 2007, 17(3):267-287. doi: 10.1615/AtomizSpr.v17.i3.30
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  107
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-04
  • 修回日期:  2019-10-09
  • 刊出日期:  2020-08-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日