留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机中冰晶结冰的研究进展

沈浩 韩冰冰 张丽芬

沈浩, 韩冰冰, 张丽芬. 航空发动机中冰晶结冰的研究进展[J]. 实验流体力学, 2020, 34(6): 1-7. doi: 10.11729/syltlx20190124
引用本文: 沈浩, 韩冰冰, 张丽芬. 航空发动机中冰晶结冰的研究进展[J]. 实验流体力学, 2020, 34(6): 1-7. doi: 10.11729/syltlx20190124
SHEN Hao, HAN Bingbing, ZHANG Lifen. Research progress of the ice crystal icing in aero-engine[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 1-7. doi: 10.11729/syltlx20190124
Citation: SHEN Hao, HAN Bingbing, ZHANG Lifen. Research progress of the ice crystal icing in aero-engine[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 1-7. doi: 10.11729/syltlx20190124

航空发动机中冰晶结冰的研究进展

doi: 10.11729/syltlx20190124
基金项目: 

结冰与防除冰重点实验室开放课题 IADL20190206

详细信息
    作者简介:

    沈浩(1978-), 男, 江苏启东人, 高级工程师。研究方向:运输类飞机机械系统适航审定。通信地址:上海虹桥机场空港一路128号(200335)。E-mail:shenhao_hdcaac.gov.cn

    通讯作者:

    张丽芬, E-mail: zhanglifen@nwpu.edu.cn

  • 中图分类号: V231.3

Research progress of the ice crystal icing in aero-engine

  • 摘要: 一般认为经过风扇压缩后空气温度高于冰点,压气机内不会发生结冰。然而近年来,国外研究者对若干起发动机推力损失故障的研究表明冰晶能够引起压气机内部结冰,并在试验室中再现了温度高于冰点时压气机内结冰这一现象。我国在航空发动机冰晶结冰研究方面刚刚起步,为准确掌握国内外研究现状,从数值和试验两方面对国内外已开展的压气机内结冰研究进行了分析与总结,讨论了当前冰晶结冰的主要研究成果和存在的局限,提出了开展冰晶结冰研究需重点关注的方向,为我国航空发动机冰晶摄入结冰研究和适航审定研究提供一定参考。
  • 图  1  发动机功率损失和发动机损伤事件发生的高度和温度范围[10]

    Figure  1.  Altitude and temperature of engine power loss and damage events[10]

    图  2  典型的涡轮风扇发动机空气压缩系统图(潜在结冰位置)[11]

    Figure  2.  Schematic of typical turbofan engine compression system with potential ice accretion sites noted[11]

    图  3  NRCC高空测试试验室安装的冰晶测试系统[23]

    Figure  3.  Ice crystal test system installed in the NRCC research altitude test facility[23]

    图  4  给定总压,总温,液态水含量,总水含量和马赫数下的最佳冰晶结冰条件概念曲线[25]

    Figure  4.  Conceptual curve showing optimal ice-crystal icing conditions for a given pt, Tt, LWC, TWC, and Mach number[25]

    图  5  湿球温度为2 ℃时不同中位质量直径冰晶积聚示例[27]

    Figure  5.  Sample accretion for different crystal MMD at Twb =2 ℃[27]

    图  6  无水膜模型和有水膜模型[40]

    Figure  6.  Model without water film and with water film[40]

    图  7  冰晶积冰的2个阶段[36]

    Figure  7.  The two stages of ice crystal icing[36]

  • [1] 申晓斌, 林贵平, 卜雪琴, 等.发动机进气道短舱前缘结冰三维模拟研究[J].航空学报, 2013, 34(3):517-524. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201303006.htm

    SHEN X B, LIN G P, BU X Q, et al. Three-dimensional simulation research on ice shape at engine inlet nacelle front[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(3):517-524. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201303006.htm
    [2] 于磊, 张书晔, 李延.发动机唇口防冰腔的热变形仿真分析[J].航空制造技术, 2017, 60(19):105-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201719023.htm

    YU L, ZHANG S Y, LI Y. Thermal deformation simulation analysis for anti-icing cavity of engine inlet[J].Aeronautical Manufacturing Technology, 2017, 60(19):105-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201719023.htm
    [3] 李云单, 陆海鹰, 朱惠人.航空发动机热气防冰结构的冲击换热特性研究[J].航空发动机, 2011, 37(5):16-20, 52. doi: 10.3969/j.issn.1672-3147.2011.05.006

    LI Y D, LU H Y, ZHU H R. Study of impacting heat transfer characteristic for aeroengine heat anti-icing structure[J]. Aeroengine, 2011, 37(5):16-20, 52. doi: 10.3969/j.issn.1672-3147.2011.05.006
    [4] 郁嘉, 赵柏阳, 卜雪琴, 等.某型飞机发动机短舱热气防冰系统性能数值模拟[J].空气动力学学报, 2016, 34(3):302-307. doi: 10.7638/kqdlxxb-2015.0212

    YU J, ZHAO B Y, BU X Q, et al. Numerical simulation of the performance of an engine nacelle hot-air anti-icing system[J].Acta Aerodynamica Sinica, 2016, 34(3):302-307. doi: 10.7638/kqdlxxb-2015.0212
    [5] 雷桂林, 郑梅, 董威, 等.航空发动机进气支板电热防冰试验[J].航空学报, 2017, 38(8):49-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201708006.htm

    LEI G L, ZHENG M, DONG W, et al. Test on electrothermal anti-icing of aero-engine inlet strut[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8):49-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201708006.htm
    [6] 董威, 朱剑鋆, 周志翔, 等.航空发动机支板热滑油防冰性能试验[J].航空学报, 2014, 35(7):1845-1853. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201407009.htm

    DONG W, ZHU J J, ZHOU Z X, et al. Test on performance of an aero-engine strut hot lubrication oil anti-icing system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1845-1853. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201407009.htm
    [7] SHAKINA N P, GORLACH I A, SKRIPTUNOVA E N, et al. Icing of aircraft engines in ice crystal clouds:a case study[J]. Russian Meteorology and Hydrology, 2014, 39(2):121-125. doi: 10.3103/S1068373914020083
    [8] GRZYCH M L, MASON J G. Weather conditions associated with jet engine power-loss and damage due to ingestion of ice particles: what we've learned through 2009[C]//Proc of the 14th Conference on Aviation, Range, and Aerospace Meteorology. 2010.
    [9] VEILLARD X, ALIAGA C, HABASHI W G. FENSAP-ICE modeling of the ice particle threat to engines in flight[R]. SAE Technical Paper 2007-01-3323, 2007.
    [10] MASON J G, STRAPP J W. The ice particle threat to engines in flight[R]. AIAA 2006-206, 2006.
    [11] MASON J G, GRZYCH M L. Current perspectives on jet engine power loss in ice crystal conditions: engine icing[C]//Proc of the 2008 AIAA Atmospheric and Space Environments 7th AIRA Research Implementation Forum. 2008.
    [12] ADDY H E, VERES J P. An overview of NASA engine ice- crystal icing research[R]. SAE Technical Paper 2011-38-0017, 2011.
    [13] STRUK P M, LYNCH C J. Ice growth measurements from image data to support ice-crystal and mixed-phase accretion testing[R]. AIAA 2012-3036, 2012.
    [14] ROSENKER M V. Safety recommendation, National Transpor-tation Safety Board. (2006-08-25). https: //www.ntsb.gov/safety/safety-recs/RecLetters/A06_56_59.pdf.
    [15] VERES J P, JORGENSON P C E. Modeling commercial turbofan engine icing risk with ice crystal ingestion[R]. AIAA 2013-2679, 2013.
    [16] GOODWIN R V, DISCHINGER D G. Turbofan ice crystal rollback investigation and preparations leading to inaugural ice crystal engine test at NASA PSL-3 test facility[R]. AIAA 2014-2895, 2014.
    [17] CALIFF C, KNEZEVICI D C. Use of a turbofan engine to measure ice crystal cloud concentration in-flight[R]. AIAA 2014-3843, 2014.
    [18] OLIVER M J. Ice crystal icing engine testing in the NASA Glenn research center's propulsion systems laboratory:altitude investigation[J]. SAE International Journal of Aerospace, 2015, 8(1):33-37. doi: 10.4271/2015-01-2156
    [19] OLIVER M J. Validation ice crystal icing engine test in the propulsion systems laboratory at NASA Glenn research center[R]. AIAA 2014-2898, 2014.
    [20] GRZYCH M L, MASON J G, PATNOE M. Ice crystal icing engine event probability estimation apparatus, system, and method: US9429680. 2016-08-30.
    [21] INKPEN S, NOLAN C, CONWAY B, et al. Apparatus and method of monitoring for in-flight aircraft engine ice crystal accretion: US20180155037. 2018-06-07.
    [22] VERES J P, JORGENSON P C, COENNEN R J. Modeling of commercial turbofan engine with ice crystal ingestion; follow-on[R]. AIAA 2014-2899, 2014.
    [23] FULEKI D M, MACLEOD J D. Ice crystal accretion test rig development for a compressor transition duct[R]. AIAA 2010-7529, 2010.
    [24] MASON J G, CHOW P, FULEKI D M. Understanding ice crystal accretion and shedding phenomenon in jet engines using a rig test[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(4):041201. doi: 10.1115/1.4002020
    [25] STRUK P M, CURRIE T, WRIGHT W B, et al. Fundamental ice crystal accretion physics studies[R]. SAE Technical Paper 2011-38-0018, 2011.
    [26] CURRIE T C, STRUK P M, TSAO J C, et al. Fundamental study of mixed-phase icing with application to ice crystal accretion in aircraft jet engines[R]. AIAA 2012-3035, 2012.
    [27] KNEZEVICI D C, FULEKI D M, CURRIE T C, et al. Particle size effects on ice crystal accretion[R]. AIAA 2012-3039, 2012.
    [28] BARTKUS T P, STRUK P M, TSAO J C, et al. Numerical analysis of mixed-phase icing cloud simulations in the NASA propulsion systems laboratory[R]. AIAA 2016-3739, 2016.
    [29] STRUK P M, BARTKUS T P, BENCIC T J, et al. An initial study of the fundamentals of ice crystal icing physics in the NASA propulsion systems laboratory[R]. AIAA 2017-4242, 2017.
    [30] MACLEOD J D. Development of ice crystal facilities for engine testing[R]. SAE Technical Paper 2007-01-3290, 2007.
    [31] FLEGEL A B, OLIVER M J. Preliminary results from a heavily instrumented engine ice crystal icing test in a ground based altitude test facility[R]. AIAA 2016-3894, 2016.
    [32] GALEOTE B. Ice crystal particle measurement using shadowgraph imaging techniques[R]. AIAA 2010-7531, 2010.
    [33] KNEZEVICI D C, FULEKI D M, MACLEOD J D. Development and commissioning of a linear compressor cascade rig for ice crystal research[R]. SAE Technical Paper 2011-38-0079, 2011.
    [34] NILAMDEEN S, HABASHI W G. Multiphase approach toward simulating ice crystal ingestion in jet engines[J]. Journal of Propulsion and Power, 2011, 27(5):959-969. doi: 10.2514/1.B34059
    [35] RÍOS M A, CHO Y I. Analysis of ice crystal ingestion as a source of ice accretion inside turbofans[R]. AIAA 2008-4165, 2008.
    [36] RÍOS M A. Ice crystal ingestion by turbofans[D]. Philadelphia: Drexel University, 2012.
    [37] KUNDU R, PRASAD J V R, TIWARI P, et al. Impact of engine icing on jet engine compressor flow dynamics[R]. AIAA 2012-3939, 2012.
    [38] NILAMDEEN S, HABASHI W G, AUBE M S, et al. FENSAP-ICE: modeling of water droplets and ice crystals[R]. AIAA 2009-4128, 2009.
    [39] WRIGHT W B, JORGENSON P C E, VERES J P. Mixed phase modeling in GlennICE with application to engine icing[R]. AIAA 2010-7674, 2010.
    [40] LOU D C, HAMMOND D W. Heat and mass transfer for ice particle ingestion inside aero-engine[J]. Journal of Turbomachinery, 2011, 133(3):031021. doi: 10.1115/1.4002419
    [41] VERES J P, JORGENSON P C E, WRIGHT W B, et al. A model to assess the risk of ice accretion due to ice crystal ingestion in a turbofan engine and its effects on performance[R]. AIAA 2012-3038, 2012.
    [42] BIDWELL C. Ice particle transport analysis with phase change for the E3 turbofan engine using LEWICE3D version 3.2[R]. AIAA 2012-3037, 2012.
    [43] 姜飞飞, 董威, 郑梅, 等.冰晶在涡扇发动机内相变换热特性[J].航空动力学报, 2019, 34(3):567-575. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201903007.htm

    JIANG F F, DONG W, ZHENG M, et al. Phase change heat transfer characteristic of ice crystal ingested into turbofan engine[J]. Journal of Aerospace Power, 2019, 34(3):567-575. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201903007.htm
    [44] TSAO J C, STRUK P M, OLIVER M J. Possible mechanisms for turbofan engine ice crystal icing at high altitude[R]. AIAA 2014-3044, 2014.
    [45] Federal Aviation Administration. Airplane and engine certification requirements in supercooled large drop, mixed phase, and ice crystal icing conditions. (2010-06-29). https://www.federalregister.gov/documents/2010/06/29/2010-15726/airplane-and-engine-certification-requirements-in-supercooled-large-drop-mixed-phase-and-ice-crystal.
    [46] 袁庆浩, 樊江, 白广忱.航空发动机内部冰晶结冰研究综述[J].推进技术, 2018, 39(12):2641-2650. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201812002.htm

    YUAN Q H, FAN J, BAI G C. Review of ice crystal icing in aero-engines[J]. Journal of Propulsion Technology, 2018, 39(12):2641-2650. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201812002.htm
    [47] ZHU P F, ZHANG J C, HAN B B, et al. Three-dimensional numerical simulation of ice crystal melting in jet engine[J]. Journal of Thermal Science, 2019, 28(5):984-992. doi: 10.1007/s11630-019-1143-3
    [48] ZHANG L F, LIU Z X, ZHANG M H. Numerical simulation of ice accretion under mixed-phase conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part G. Journal of aerospace engineering, 2016, 230(G13):2473-2483. http://www.researchgate.net/publication/291388508_Numerical_simulation_of_ice_accretion_under_mixed-phase_conditions
  • 加载中
图(7)
计量
  • 文章访问数:  752
  • HTML全文浏览量:  245
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-23
  • 修回日期:  2020-01-13
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日