留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于层析原理的湍流火焰三维测量综述

宋尔壮 雷庆春 范玮

宋尔壮, 雷庆春, 范玮. 基于层析原理的湍流火焰三维测量综述[J]. 实验流体力学, 2020, 34(1): 1-11. doi: 10.11729/syltlx20190135
引用本文: 宋尔壮, 雷庆春, 范玮. 基于层析原理的湍流火焰三维测量综述[J]. 实验流体力学, 2020, 34(1): 1-11. doi: 10.11729/syltlx20190135
SONG Erzhuang, LEI Qingchun, FAN Wei. A review on three-dimensional flame measurements based on tomography[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 1-11. doi: 10.11729/syltlx20190135
Citation: SONG Erzhuang, LEI Qingchun, FAN Wei. A review on three-dimensional flame measurements based on tomography[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 1-11. doi: 10.11729/syltlx20190135

基于层析原理的湍流火焰三维测量综述

doi: 10.11729/syltlx20190135
基金项目: 

国家自然科学基金 91741108

详细信息
    作者简介:

    宋尔壮(1996-), 男, 重庆南岸人, 博士研究生。研究方向:燃烧诊断。通信地址:陕西省西安市长安区东祥路1号西北工业大学长安校区动力与能源学院(710129)。E-mail:sez@mail.nwpu.edu.cn

    通讯作者:

    雷庆春, E-mail:lqc@nwpu.edu.cn

  • 中图分类号: O643.2

A review on three-dimensional flame measurements based on tomography

  • 摘要: 实现对湍流火焰的三维测量是人们长期追求的目标之一。近十年,随着高速相机、激光、数值算法的高速发展,高时空分辨的三维燃烧诊断成为可能。对基于层析原理的三维燃烧诊断技术的发展与应用现状进行综述:首先介绍层析技术的原理以及相关算法的发展情况;其次对实现三维层析燃烧诊断的测量系统进行综述;再次,按照光学信号的分类,分别介绍层析技术结合发射光谱、激光诱导荧光、阴影/纹影、Mie散射等进行三维燃烧测量的应用情况;最后,从实际应用的角度出发,对层析三维燃烧诊断技术的发展提出展望。
  • 图  1  层析问题数学描述

    Figure  1.  Mathematical description of tomography problem

    图  2  单相机旋转法实验装置示意图[40]

    Figure  2.  Schematic setup of single camera rotating method[40]

    图  3  旋流火焰三维热释放率振荡分布测量结果[39]

    Figure  3.  3D heat release rate perturbations in a swirl flame[39]

    图  4  多相机实验装置图[43]

    Figure  4.  Experimental setup using multiple cameras[43]

    图  5  利用光纤内窥镜对超燃冲压燃烧室进行三维测量实验装置图

    Figure  5.  Experimental setup for 3D measurements in a supersonic combustor using optical fiber endoscopes

    图  6  亚声速射流火焰三维结构随时间演变

    Figure  6.  Time evolution of 3D flame structure of a subsonic jet flame

    图  7  湍流预混火焰的VLIF与PLIF测量结果[63]

    Figure  7.  Simultaneous VLIF and PLIF measurements on a turbulent premixed flame[63]

    图  8  层析纹影测量三维火核形态[17]

    Figure  8.  3D structures of flame kernel measured by tomographic shlieren[17]

  • [1] KYCHAKOFF G, PAUL P H, VAN CRUYNINGEN I, et al. Movies and 3-D images of flowfields using planar laser-induced fluorescence[J]. Applied Optics, 1987, 26(13): 2498-2500. doi: 10.1364/AO.26.002498
    [2] YIP B, LAM J K, WINTER M, et al. Time-resolved three-dimensional concentration measurements in a gas jet[J]. Science, 1987, 235(4793): 1209-1211. doi: 10.1126/science.235.4793.1209
    [3] NG R, LEVOY M, BRÉDIF M, et al. Light field photography with a hand-held plenoptic camera[J]. Computer Science Technical Report CSTR, 2005, 2(11): 1-11. http://cn.bing.com/academic/profile?id=91b07568d85e3e2056e7e33d32a4e64c&encoded=0&v=paper_preview&mkt=zh-cn
    [4] TROLINGER J D, HEAP M P. Coal particle combustion studied by holography[J]. Applied Optics, 1979, 18(11): 1757-1762. doi: 10.1364/AO.18.001757
    [5] CHO K Y, SATIJA A, POURPOINT T L, et al. High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion[J]. Applied Optics, 2014, 53(3): 316-326. doi: 10.1364/AO.53.000316
    [6] HARKER M, HATTRELL T, LAWES M, et al. Measurements of the three-dimensional structure of flames at low turbulence[J]. Combustion Science, 2012, 184(10-11): 1818-1837. doi: 10.1080/00102202.2012.691775
    [7] HULT J, OMRANE A, NYGREN J, et al. Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames[J]. Experiments in Fluids, 2002, 33(2): 265-269. doi: 10.1007/s00348-002-0410-2
    [8] HALLS B R, HSU P S, JIANG N, et al. kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator[J]. Optica, 2017, 4(8): 897-902. doi: 10.1364/OPTICA.4.000897
    [9] LI T, PAREJA J, FUEST F, et al. Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames[J]. Measurement Science, 2017, 29(1): 015206. http://cn.bing.com/academic/profile?id=0a88792b48a6b907461e1c200351ed12&encoded=0&v=paper_preview&mkt=zh-cn
    [10] MA L, LEI Q, IKEDA J, et al. Single-shot 3D flame diagnostic based on volumetric laser induced fluorescence (VLIF)[J]. Proceedings of the Combustion Institute, 2017, 36(3): 4575-4583. doi: 10.1016/j.proci.2016.07.050
    [11] PAREJA J, JOHCHI A, LI T, et al. A study of the spatial and temporal evolution of auto-ignition kernels using time-resolved tomographic OH-LIF[J]. Proceedings of the Combustion Institute, 2019, 37(2): 1321-1328. https://www.researchgate.net/publication/325928590_A_study_of_the_spatial_and_temporal_evolution_of_auto-ignition_kernels_using_time-resolved_tomographic_OH-LIF
    [12] FLOYD J, KEMPF A. Computed tomography of chemilumi-nescence (CTC): high resolution and instantaneous 3-D measurements of a matrix burner[J]. Proceedings of the Combustion Institute, 2011, 33(1): 751-758. doi: 10.1016/j.proci.2010.06.015
    [13] WORTH N A, DAWSON J R. Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames[J]. Measurement Science, 2012, 24(2): 024013. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eacaab5e4056229f8bbf3aa0987cb3c8
    [14] LI X, MA L. Volumetric imaging of turbulent reactive flows at kHz based on computed tomography[J]. Optics Express, 2014, 22(4): 4768-4778. doi: 10.1364/OE.22.004768
    [15] LI X, MA L. Capabilities and limitations of 3D flame measurements based on computed tomography of chemilumi-nescence[J]. Combustion and Flame, 2015, 162(3): 642-651. doi: 10.1016/j.combustflame.2014.08.020
    [16] GRAUER S J, UNTERBERGER A, RITTLER A, et al. Instantaneous 3D flame imaging by background-oriented schlieren tomography[J]. Combustion and Flame, 2018, 196: 284-299. doi: 10.1016/j.combustflame.2018.06.022
    [17] ISHINO Y, HAYASHI N, ISHIKO Y, et al. Schlieren 3D-CT reconstruction of instantaneous density distributions of spark-ignited flame kernels of fuel-rich propane-air premixture[C]//ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME International Conference on Nanochannels, Microchannels and Minichannels, Washington D C, USA, 2016.
    [18] GONZALEZ R C, WOODS R E.数字图像处理: 第3版[M].阮秋琦, 阮宇智, 译.北京: 电子工业出版社, 2017.
    [19] BEST P, CHIEN P, CARANGELO R, et al. Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures[J]. Combustion and Flame, 1991, 85(3-4): 309-318. doi: 10.1016/0010-2180(91)90136-Y
    [20] MOHAMAD E J, RAHIM R A, IBRAHIM S, et al. Flame imaging using laser-based transmission tomography[J]. Sensors Actuators A: Physical, 2006, 127(2): 332-339. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210602141/
    [21] EMMERMAN P, GOULARD R, SANTORO R, et al. Multiangular absorption diagnostics of a turbulent argon-methane jet[J]. Journal of Energy, 1980, 4(2): 70-77. http://cn.bing.com/academic/profile?id=1f38bba4d0cfe8a58e735c8220783a72&encoded=0&v=paper_preview&mkt=zh-cn
    [22] SNYDER R, HESSELINK L. Measurement of mixing fluid flows with optical tomography[J]. Optics Letters, 1988, 13(2): 87-89. http://cn.bing.com/academic/profile?id=c9ef19ab823328294b65081d589477be&encoded=0&v=paper_preview&mkt=zh-cn
    [23] GORDON R, BENDER R, HERMAN G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 1970, 29(3): 471-481. http://cn.bing.com/academic/profile?id=6efa7336c2ab05df1af31ea2f6d51c9d&encoded=0&v=paper_preview&mkt=zh-cn
    [24] BELKEBIR K, CHAUMET P C, SENTENAC A. Influence of multiple scattering on three-dimensional imaging with optical diffraction tomography[J]. JOSA A, 2006, 23(3): 586-595. doi: 10.1364/JOSAA.23.000586
    [25] MAIRE G, DRSEK F, GIRARD J, et al. Experimental demonstration of quantitative imaging beyond Abbe's limit with optical diffraction tomography[J]. Physical Review Letters, 2009, 102(21): 213905. doi: 10.1103/PhysRevLett.102.213905
    [26] MOLINARI M, COX S J, BLOTT B H, et al. Comparison of algorithms for non-linear inverse 3D electrical tomography reconstruction[J]. Physiological Measurement, 2002, 23(1): 95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0eaac04ab17c040b076f8d3ab75cc147
    [27] MOGHADDAM M, CHEW W C. Nonlinear two-dimensional velocity profile inversion using time domain data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(1): 147-156. doi: 10.1109/36.124225
    [28] FANG W. A nonlinear image reconstruction algorithm for electrical capacitance tomography[J]. Measurement Science Technology, 2004, 15(10): 2124. doi: 10.1088/0957-0233/15/10/023
    [29] JOACHIMOWICZ N, MALLORQUI J J, BOLOMEY J C, et al. Convergence and stability assessment of Newton-Kantorovich reconstruction algorithms for microwave tomography[J]. IEEE Transactions on Medical Imaging, 1998, 17(4): 562-570. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=194dfe3ec4d6d6288a023303927eb2a6
    [30] JIANG H, PAULSEN K D, OSTERBERG U L, et al. Optical image reconstruction using frequency-domain data: simulations and experiments[J]. Journal of the Optical Society of America, 1996, 13(2): 253-266. doi: 10.1364/JOSAA.13.000253
    [31] CAI W, EWING D J, MA L. Application of simulated annealing for multispectral tomography[J]. Computer Physics Communications, 2008, 179(4): 250-255. doi: 10.1016/j.cpc.2008.02.012
    [32] MA L, LI X, SANDERS S T, et al. 50 kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography[J]. Optics Express, 2013, 21(1): 1152-1162. doi: 10.1364/OE.21.001152
    [33] MA L, CAI W. Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging[J]. Applied Optics, 2008, 47(21): 3751-3759. doi: 10.1364/AO.47.003751
    [34] HSIAO C T, CHAHINE G, GUMEROV N. Application of a hybrid genetic/Powell algorithm and a boundary element method to electrical impedance tomography[J]. Journal of Computational Physics, 2001, 173(2): 433-454. https://www.sciencedirect.com/science/article/pii/S0021999101968664
    [35] CORANA A, MARCHESI M, MARTINI C, et al. Minimizing multimodal functions of continuous variables with the "simulated annealing" algorithm Corrigenda for this article is available here[J]. ACM Transactions on Mathematical Soft-ware, 1987, 13(3): 262-280. doi: 10.1145/29380.29864
    [36] LEI Q, WU Y, XU W, et al. Development and validation of a reconstruction algorithm for three-dimensional nonlinear tomography problems[J]. Optics Express, 2016, 24(14): 15912-15926. doi: 10.1364/OE.24.015912
    [37] YONG Y, TIAN Q, GANG L, et al. Recent advances in flame tomography[J]. Chinese Journal of Chemical Engineering, 2012, 20(2): 389-399. doi: 10.1016/S1004-9541(12)60402-9
    [38] WORTH N A, DAWSON J R. Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames[J]. Measurement Science Technology, 2012, 24(2): 024013. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eacaab5e4056229f8bbf3aa0987cb3c8
    [39] MOECK J P, BOURGOUIN J F, DUROX D, et al. Tomographic reconstruction of heat release rate perturbations induced by helical modes in turbulent swirl flames[J]. Experiments in Fluids, 2013, 54(4): 1498. doi: 10.1007/s00348-013-1498-2
    [40] SAMARASINGHE J, PELUSO S J, QUAY B D, et al. The three-dimensional structure of swirl-stabilized flames in a lean premixed multinozzle can combustor[J]. Journal of Engineering for Gas Turbines Power, 2016, 138(3): 031502. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea86d1537856f682100b14d7675bce8f
    [41] ISHINO Y, OHIWA N. Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame[J]. JSME International Journal Series B Fluids Thermal Engineering, 2005, 48(1): 34-40. doi: 10.1299/jsmeb.48.34
    [42] MOHRI K, GÖRS S, SCHÖLER J, et al. Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence[J]. Applied Optics, 2017, 56(26): 7385-7395. doi: 10.1364/AO.56.007385
    [43] KHADIJEH M, SIMON G, JONATHAN S, et al. Instan-taneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence[J]. Applied Optics, 2017, 56(26): 7385-7395. doi: 10.1364/AO.56.007385
    [44] WU Y, XU W, LEI Q, et al. Single-shot volumetric laser induced fluorescence (VLIF) measurements in turbulent flows seeded with iodine[J]. Optics Express, 2015, 23(26): 33408-33418. doi: 10.1364/OE.23.033408
    [45] RUAN C, YU T, CHEN F, et al. Experimental characteri-zation of the spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed tomography of chemiluminescence[J]. Energy, 2019, 170: 744-751. doi: 10.1016/j.energy.2018.12.215
    [46] MA L, LEI Q, WU Y, et al. From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz[J]. Combustion and Flame, 2016, 165: 1-10. doi: 10.1016/j.combustflame.2015.08.026
    [47] LIU H, SUN B, CAI W. kHz-rate volumetric flame imaging using a single camera[J]. Optics Communications, 2019, 437: 33-43. doi: 10.1016/j.optcom.2018.12.036
    [48] CAI W, KAMINSKI C F. Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows[J]. Progress in Energy Combustion Science, 2017, 59: 1-31. doi: 10.1016/j.pecs.2016.11.002
    [49] LIU X, WANG G, ZHENG J, et al. Temporally resolved two dimensional temperature field of acoustically excited swirling flames measured by mid-infrared direct absorption spectroscopy[J]. Optics Express, 2018, 26(24): 31983-31994. doi: 10.1364/OE.26.031983
    [50] 宋俊玲, 洪延姬, 王广宇.燃烧场吸收光谱断层诊断技术[M].北京: 国防工业出版社, 2014.

    SONG J L, HONG Y J, WANG G Y. Combustion field absorption spectrum tomography[M]. Beijing: National Defense Industry Press, 2014.
    [51] MA L, WU Y, LEI Q, et al. 3D flame topography and curvature measurements at 5 kHz on a premixed turbulent Bunsen flame[J]. Combustion and Flame, 2016, 166: 66-75. doi: 10.1016/j.combustflame.2015.12.031
    [52] UNTERBERGER A, RÖDER M, GIESE A, et al. 3D instantaneous reconstruction of turbulent industrial flames using Computed Tomography of Chemiluminescence (CTC)[J]. Journal of Combustion, 2018, 5373829.
    [53] WISEMAN S M, BREAR M J, GORDON R L, et al. Measurements from flame chemiluminescence tomography of forced laminar premixed propane flames[J]. Combustion and Flame, 2017, 183: 1-14. doi: 10.1016/j.combustflame.2017.05.003
    [54] SAMARASINGHE J, PELUSO S J, QUAY B D, et al. The three-dimensional structure of swirl-stabilized flames in a lean premixed multinozzle can combustor[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(3): 031502. doi: 10.1115/1.4031439
    [55] HUANG Q X, WANG F, LIU D, et al. Reconstruction of soot temperature and volume fraction profiles of an asymmetric flame using stereoscopic tomography[J]. Combustion and Flame, 2009, 156(3): 565-573. doi: 10.1016/j.combustflame.2009.01.001
    [56] TURNS S R. An introduction to combustion[M]. New York: McGraw-Hill College, 1996.
    [57] HOSSAIN M M, LU G, SUN D, et al. Three-dimensional reconstruction of flame temperature and emissivity distribution using optical tomographic and two-colour pyrometric techniques[J]. Measurement Science Technology, 2013, 24(7): 074010. doi: 10.1088/0957-0233/24/7/074010
    [58] STASIO S D, MASSOLI P. Influence of the soot property uncertainties in temperature and volume-fraction measurements by two-colour pyrometry[J]. Measurement Science Technology, 1994, 5(12): 1453. doi: 10.1088/0957-0233/5/12/006
    [59] HOSSAIN M M, LU G, YAN Y. Soot volume fraction profiling of asymmetric diffusion flames through tomographic imaging[C]//Proceeding of IEEE International Conference on Imaging Systems and Techniques (IST). 2014.
    [60] KOHSE-HÖINGHAUS K, JEFFRIES J B. Applied combustion diagnostics[M]. New York: Taylor and Francis, 2002.
    [61] 刘晶儒, 赵新艳, 叶锡生, 等.激光光谱技术在燃烧流场诊断中的应用[J].光学精密工程, 2011, 19(2): 284-296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201102010

    LIU J R, ZHAO X Y, YE X S, et al. Application of laser spectroscopy in combustion flow field diagnosis[J]. Optics and Precision Engineering, 2011, 19(2): 284-296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201102010
    [62] MILLER J D, PELTIER S J, SLIPCHENKO M N, et al. Investigation of transient ignition processes in a model scramjet pilot cavity using simultaneous 100 kHz formaldehyde planar laser-induced fluorescence and CH* chemiluminescence imaging[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2865-2872. doi: 10.1016/j.proci.2016.07.060
    [63] MA L, LEI Q, CAPIL T, et al. Direct comparison of two-dimensional and three-dimensional laser-induced fluorescence measurements on highly turbulent flames[J]. Optics Letters, 2017, 42(2): 267-270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ca98f196882ef5eba0edf9835c3e9bb1
    [64] HALLS B R, THUL D J, MICHAELIS D, et al. Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet[J]. Optics Express, 2016, 24(9): 10040-10049. doi: 10.1364/OE.24.010040
    [65] HALLS B R, HSU P, ROY S, et al. Two-color volumetric laser-induced fluorescence for 3D OH and temperature fields in turbulent reacting flows[J]. Optics Letters, 2018, 43(12): 2961-2964. doi: 10.1364/OL.43.002961
    [66] SCHWARZ A. Multi-tomographic flame analysis with a schlieren apparatus[J]. Measurement Science Technology, 1996, 7(3): 406. doi: 10.1088/0957-0233/7/3/023
    [67] SETTLES G S, HARGATHER M J. A review of recent developments in schlieren and shadowgraph techniques[J]. Measurement Science Technology, 2017, 28(4): 042001. doi: 10.1088/1361-6501/aa5748
    [68] ISHINO Y, HAYASHI N, RAZAK I F B A, et al. 3D-CT (computer tomography) measurement of an instantaneous density distribution of turbulent flames with a multi-directional quantitative schlieren camera (reconstructions of high-speed premixed burner flames with different flow velocities)[J]. Flow, Turbulence Combustion, 2016, 96: 819-835. doi: 10.1007/s10494-015-9658-5
    [69] KLINNER J, WILLERT C. Tomographic shadowgraphy for three-dimensional reconstruction of instantaneous spray distributions[J]. Experiments in Fluids, 2012, 53(2): 531-543. doi: 10.1007/s00348-012-1308-2
    [70] UPTON T, VERHOEVEN D, HUDGINS D. High-resolution computed tomography of a turbulent reacting flow[J]. Experiments in Fluids, 2011, 50(1): 125-134. doi: 10.1007/s00348-010-0900-6
    [71] NICOLAS F, TODOROFF V, PLYER A, et al. A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measurements[J]. Experiments in Fluids, 2016, 57(1): 13. doi: 10.1007/s00348-015-2100-x
    [72] HUANG J Q, LIU H C, CAI W W. Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning[J]. Journal of Fluid Mechanics, 2019, 875, R2. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112019005457
  • 加载中
图(8)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  120
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-18
  • 修回日期:  2019-12-24
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日