留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

并列双圆柱尾流切向喷射控制研究

袁方洋 曹阳 凃程旭 邹衡

袁方洋, 曹阳, 凃程旭, 等. 并列双圆柱尾流切向喷射控制研究[J]. 实验流体力学, 2020, 34(5): 70-78. doi: 10.11729/syltlx20190151
引用本文: 袁方洋, 曹阳, 凃程旭, 等. 并列双圆柱尾流切向喷射控制研究[J]. 实验流体力学, 2020, 34(5): 70-78. doi: 10.11729/syltlx20190151
YUAN Fangyang, CAO Yang, TU Chengxu, et al. Control of side-by-side cylinders wake by a pair of tangential jets[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 70-78. doi: 10.11729/syltlx20190151
Citation: YUAN Fangyang, CAO Yang, TU Chengxu, et al. Control of side-by-side cylinders wake by a pair of tangential jets[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 70-78. doi: 10.11729/syltlx20190151

并列双圆柱尾流切向喷射控制研究

doi: 10.11729/syltlx20190151
基金项目: 

国家自然科学基金青年科学基金 11802105

江苏省自然科学基金青年基金 BK20180621

中央高校基本科研业务费专项资金 JUSRP12034

详细信息
    作者简介:

    袁方洋(1990-), 男, 江苏无锡人, 讲师, 博士。研究方向:流体动力学。通信地址:江苏省无锡市滨湖区蠡湖大道1800号江南大学机械工程学院(214122)。E-mail:fyyuan@jiangnan.edu.cn

    通讯作者:

    袁方洋, E-mail:fyyuan@jiangnan.edu.cn

  • 中图分类号: O357

Control of side-by-side cylinders wake by a pair of tangential jets

  • 摘要: 采用PIV实验研究雷诺数为4000、中心距比为1.1的绕并列双圆柱流动施加切向喷射的尾涡控制特性。发现尾涡流场呈现双稳态偏流流型,偏向间隙流的存在将导致圆柱附近时均尾流场沿圆柱中心轴线不对称。分析圆柱尾流涡旋的分布情况和升力频谱,发现可以根据喷射角度θ及射流动量系数Cμ的大小将切向喷射尾流的控制效果分为无效区(θ≤20°或Cμ < 0.135)、非完全控制区(θ > 20°且Cμ > 0.135)和完全控制区(θ > 35°且Cμ > 0.304)。在非完全控制区,切向喷射诱导的射流势流区将并列双圆柱宽尾流抑制为窄尾流,涡系分布范围控制收缩在近尾流的一个三角形区域内。随着喷射角的增大或是射流动量系数的增大,圆柱所受升力的频谱峰值逐渐降低。在完全控制区,并列双圆柱尾流完全被消除,从时均场上看已无明显的涡旋存在,此时控制效果最优。
  • 图  1  风洞整体结构示意图

    Figure  1.  Structure of the wind tunnel

    图  2  控制实验装置示意图

    Figure  2.  Schematic diagram of control system

    图  3  PIV系统安装图

    Figure  3.  Picture of PIV system

    图  4  喷射尾流控制截面示意图

    Figure  4.  Cross section of jet wake control diagram

    图  5  Cμ=0.029时尾流场流线图与时均速度矢量图

    Figure  5.  Streamlines and time-average velocity vectors of wake at Cμ=0.029

    图  6  Cμ=0.218时尾流场流线图与时均速度矢量图

    Figure  6.  Streamlines and time-average velocity vectors of wake at Cμ=0.218

    图  7  Cμ=0.405时尾流场流线图

    Figure  7.  Streamlines of wake at Cμ=0.405

    图  8  θ=25°时尾流场流线图

    Figure  8.  Streamlines of wake at θ=25°

    图  9  θ=35°时尾流场流线图

    Figure  9.  Streamlines of wake at θ=35°

    图  10  θ=45°时尾流场流线图

    Figure  10.  Streamlines of wake at θ=45°

    图  11  Re=4000切向喷射尾流控制效果分区

    Figure  11.  Tangential jet wake control effect zones at Re=4000

    图  12  圆柱升力功率频谱分析

    Figure  12.  Spectrum analysis of cylinder lift

  • [1] 及春宁, 李非凡, 陈威霖, 等.圆柱涡激振动研究进展与展望[J].海洋技术学报, 2015, 34(1):106-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hyjs201501018

    JI C N, LI F F, CHEN W L, et al. Progress and prospect of the study on vortex-induced vibration of circular cylinders[J]. Journal of Ocean Technology, 2015, 34(1):106-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hyjs201501018
    [2] 邵传平, 陈野军, 王赛, 等.流向振荡柱体尾流控制研究进展[J].力学进展, 2014, 44(1):188-235. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201401005

    SHAO C P, CHEN Y J, WANG S, et al. Advances in the control of wakes behind an in-line oscillating cylinder[J]. Advances in Mechanics, 2014, 44(1):188-235. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201401005
    [3] 马力群, 冯立好.放置于驻点的合成射流控制圆柱涡脱落模式的实验研究[J].中国科学(技术科学), 2013, 43(2):208-219. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201302010

    MA L Q, FENG L H. Experimental investigation on control of vortex shedding mode of a circular cylinder using synthetic jets placed at stagnation points[J]. Scientia Sinica Technologica, 2013, 43(2):208-219. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201302010
    [4] SUMNER D. Two circular cylinders in cross-flow:a review[J]. Journal of Fluids and Structures, 2010, 26(6):849-899. doi: 10.1016/j.jfluidstructs.2010.07.001
    [5] ZDRAVKOVICH M. Flow around circular cylinders:Vol 2:Applications[M]. London:Oxford University Press, 1998.
    [6] HUANG S. VIV suppression of a two-degree-of-freedom circular cylinder and drag reduction of a fixed circular cylinder by the use of helical grooves[J]. Journal of Fluids and Structures, 2011, 27(7):1124-1133. doi: 10.1016/j.jfluidstructs.2011.07.005
    [7] 张鹏飞, 苏中地.后置分流平板对并列双圆柱流场特性的影响[J].中国计量学院学报, 2012, 23(2):145-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjlxyxb201202009

    ZHANG P F, SU Z D. Effect of a downstream splitter plate on flow past two side-by-side cylinders[J]. Journal of China Jiliang University, 2012, 23(2):145-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjlxyxb201202009
    [8] ORUÇ V, ATAKAN AKAR M, AKILLI H, et al. Sup-pression of asymmetric flow behavior downstream of two side-by-side circular cylinders with a splitter plate in shallow water[J]. Measurement, 2013, 46(1):442-455. doi: 10.1016/j.measurement.2012.07.020
    [9] CHEN W L, GAO D L, YUAN W Y, et al. Passive jet control of flow around a circular cylinder[J]. Experiments in Fluids, 2015, 56(11):1-15. doi: 10.1007/s00348-015-2077-5
    [10] CHEN W L, WANG X J, XU F, et al. Passive jet flow control method for suppressing unsteady vortex shedding from a circular cylinder[J]. Journal of Aerospace Engineering, 2017, 30(1):04016063. doi: 10.1061/(ASCE)AS.1943-5525.0000661
    [11] YOON H S, KIM J H, CHUN H H, et al. Laminar flow past two rotating circular cylinders in a side-by-side arrangement[J]. Physics of Fluids, 2007, 19(12):128103. doi: 10.1063/1.2786373
    [12] YOON H S, CHUN H H, KIM J H, et al. Flow characteristics of two rotating side-by-side circular cylinder[J]. Computers & Fluids, 2009, 38(2):466-474. http://www.sciencedirect.com/science/article/pii/S0045793008001679
    [13] 聂德明, 郑梦娇, 高原, 等.并列双椭圆柱绕流的格子Boltzmann-虚拟区域方法的模拟研究[J].计算力学学报, 2014, 31(4):517-525. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jslxxb201404017

    NIE D M, ZHENG M J, GAO Y, et al. Numerical investi-gation of flow past two elliptical cylinders in side-by-side arrangement via lattice Boltzmann-fictitious domain method[J]. Chinese Journal of Computational Mechanics, 2014, 31(4):517-525. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jslxxb201404017
    [14] TU C X, BAO F B, HUANG L. Properties of the flow around two rotating circular cylinders in side-by-side arrangement with different rotation types[J]. Thermal Science, 2014, 18(5):1487-1492. doi: 10.2298/TSCI1405487T
    [15] GUO X H, LIN J Z, TU C X, et al. Flow past two rotating circular cylinders in a side-by-side arrangement[J]. Journal of Hydrodynamics, 2009, 21(2):143-151. doi: 10.1016/S1001-6058(08)60131-6
    [16] 孙姣, 张宾, 唐湛棋, 等.旋转圆柱绕流的PIV实验研究[J].实验流体力学, 2016, 30(1):81-90. http://www.syltlx.com/CN/abstract/abstract10904.shtml

    SUN J, ZHANG B, TANG Z Q, et al. Experimental study on the flow past a rotating cylinder with PIV[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1):81-90. http://www.syltlx.com/CN/abstract/abstract10904.shtml
    [17] FENG L H, WANG J J. Circular cylinder vortex-synchroni-zation control with a synthetic jet positioned at the rear stagnation point[J]. Journal of Fluid Mechanics, 2010, 662:232-259. doi: 10.1017/S0022112010003174
    [18] FENG L H, WANG J J, PAN C. Effect of novel synthetic jet on wake vortex shedding modes of a circular cylinder[J]. Journal of Fluids and Structures, 2010, 26(6):900-917. doi: 10.1016/j.jfluidstructs.2010.05.003
    [19] FENG L H, WANG J J, PAN C. Proper orthogonal decom-position analysis of vortex dynamics of a circular cylinder under synthetic jet control[J]. Physics of Fluids, 2011, 23(1):014106. doi: 10.1063/1.3540679
    [20] FENG L H, WANG J J. The virtual aeroshaping enhancement by synthetic jets with variable suction and blowing cycles[J]. Physics of Fluids, 2014, 26(1):014105. doi: 10.1063/1.4861367
    [21] WANG C L, TANG H, DUAN F, et al. Control of wakes and vortex-induced vibrations of a single circular cylinder using synthetic jets[J]. Journal of Fluids and Structures, 2016, 60:160-179. doi: 10.1016/j.jfluidstructs.2015.11.003
    [22] 乔晨亮, 许和勇, 叶正寅.钝后缘风力机翼型的环量控制研究[J].力学学报, 2019, 51(1):135-145. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201901014

    QIAO C L, XU H Y, YE Z Y. Circulation control on wind turbine airfoil with blunt trailing edge[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1):135-145. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201901014
    [23] PANG J, ZONG Z, ZOU L, et al. Numerical simulation of the flow around two side-by-side circular cylinders by IVCBC vortex method[J]. Ocean Engineering, 2016, 119:86-100. doi: 10.1016/j.oceaneng.2016.03.054
    [24] 王勇, 郝南松, 耿子海, 等.基于时间解析PIV的圆柱绕流尾迹特性研究[J].实验流体力学, 2018, 32(1):64-70. http://www.syltlx.com/CN/abstract/abstract11081.shtml

    WANG Y, HAO N S, GENG Z H, et al. Measurements of circular cylinder's wake using time-resolved PIV[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1):64-70. http://www.syltlx.com/CN/abstract/abstract11081.shtml
  • 加载中
图(12)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  81
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-12
  • 修回日期:  2020-01-13
  • 刊出日期:  2020-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日