留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层析粒子图像测速技术研究进展

李晓辉 王宏伟 黄湛 赵俊波

李晓辉, 王宏伟, 黄湛, 等. 层析粒子图像测速技术研究进展[J]. 实验流体力学, 2021, 35(1): 86-96. doi: 10.11729/syltlx20190160
引用本文: 李晓辉, 王宏伟, 黄湛, 等. 层析粒子图像测速技术研究进展[J]. 实验流体力学, 2021, 35(1): 86-96. doi: 10.11729/syltlx20190160
LI Xiaohui, WANG Hongwei, HUANG Zhan, et al. Research advances of tomographic particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 86-96. doi: 10.11729/syltlx20190160
Citation: LI Xiaohui, WANG Hongwei, HUANG Zhan, et al. Research advances of tomographic particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 86-96. doi: 10.11729/syltlx20190160

层析粒子图像测速技术研究进展

doi: 10.11729/syltlx20190160
详细信息
    作者简介:

    李晓辉(1990-), 男, 安徽宿州人, 硕士, 工程师。研究方向: 流动显示及流动控制技术。通信地址: 北京市丰台区云岗西路17号(100074)。E-mail: lx1991h@163.com

    通讯作者:

    黄湛, E-mail: xfd_huangzh@sina.com

  • 中图分类号: V211.7

Research advances of tomographic particle image velocimetry

  • 摘要: 层析粒子图像测速技术(Tomographic Particle Image Velocimetry,Tomo-PIV)作为一种瞬时的三维流场速度测量技术,能够为具有强非定常性及强三维空间性的复杂流动提供详细的数据支撑。对近年来该技术在国内外的发展及应用进行了全面的综述。首先介绍了层析粒子图像测速技术的工作原理和技术特点,进而探讨了当前层析粒子图像测速的研究现状,重点从相机布局、示踪粒子密度、标定映射函数及三维重构算法对重构精度的影响等方面进行了阐述,而后通过国内外关于层析粒子图像测速技术的典型应用,展示了该技术在非定常三维流动及工程应用中的优势。最后,对层析粒子图像测速技术的应用前景及发展趋势进行了展望。
  • 图  1  Tomo-PIV工作原理

    Figure  1.  Principles of Tomo-PIV

    图  2  相机布局方式[21]

    Figure  2.  The camera layout[21]

    图  3  相机系统孔径角对重构质量的影响[21]

    Figure  3.  Reconstruction quality factor versus system aperture angle [21]

    图  4  不同示踪粒子浓度的实验图像(左为示踪粒子浓度)[22]

    Figure  4.  Images of experiments at different particle concentrations (the left is the concentration of particles, ppp)[22]

    图  5  标定残差示意图

    Figure  5.  Schematic diagram of calibration residuals

    图  6  粒子匹配示意图[24]

    Figure  6.  Schematic diagram of particle matching[24]

    图  7  虚假粒子

    Figure  7.  Ghost particles

    图  8  瞬时涡结构等值面(d为圆柱直径)[17]

    Figure  8.  Iso-surface of instantaneous vortex structure [17]

    图  9  三维流场瞬时截面图(d为圆柱直径)[55]

    Figure  9.  Iso-surface of instantaneous field[55]

    图  10  瞬时三维结构[56]

    Figure  10.  Instantaneous three-dimensional structure[56]

    图  11  激波边界层概念模型[63]

    Figure  11.  Conceptual model of shock/boundary interaction[63]

    图  12  Tomo-PIV相关工程应用

    Figure  12.  Some engineering applications of Tomo-PIV

    表  1  典型三维重构算法

    Table  1.   Typical three-dimensional reconstruction algorithm

    Reconstruction methods References
    Multiplicative first guess MART Worth and Nickels(2008)[26]
    Multiplied line of sight MART Atkinson, et al.(2008)[27]
    Adaptivemultiplied line
    of sight MART
    Atkinson, et al. (2010)[28]
    Motion tracking enhanced MART Novara, et al. (2010)[29]
    MG(multi resolution) algorithm Discetti and Astarita(2012)[30]
    Spatial filtering MART Discetti, et al.(2013b)[31]
    Intensity enhanced MART Wang, et al.(2016)[32]
    Simultaneous MART Atkinson and Soria(2009)[33]
    Block iterative MART Thomas, et al.(2014)[34]
    PVR-SMART Champagnat, et al.(2014)[35]
    Multigrid MART Discetti, et al.[36]
    下载: 导出CSV
  • [1] 申功炘, 张永刚, 曹晓光, 等. 数字全息粒子图像测速技术(DHPIV)研究进展[J]. 力学进展, 2007, 37(4): 563-574. doi: 10.3321/j.issn:1000-0992.2007.04.006

    SHEN G X, ZHANG Y G, CAO X G, et al. Research advances in digital holography particle image velocimetry[J]. Advances in Mechanics, 2007, 37(4): 563-574. doi: 10.3321/j.issn:1000-0992.2007.04.006
    [2] 庄逢甘, 黄志澄. 未来高科技战争对空气动力学创新发展的需求[C]//空气动力学前沿研究论文集. 2003.
    [3] 崔尔杰. 空天技术发展与现代空气动力学[C]//近代空气动力学研讨会论文集. 2005.
    [4] DÉLERY J M. Robert Legendre and Henri Werlé: toward the elucidation of three-dimensional separation[J]. Annual Review of Fluid Mechanics, 2001, 33(1): 129-154. doi: 10.1146/annurev.fluid.33.1.129
    [5] 叶友达, 卢笙, 张涵信. 高超声速远程机动飞行器气动特性研究[C]//近代空气动力学研讨会论文集. 2005.
    [6] TRIANTAFYLLON M S. Hydrodynamics of fishlike swimming[J]. Annual Review of Fluid Mechanics, 2000, 32(1): 33~53. doi: 10.1146/annurev.fluid.32.1.33
    [7] 孙茂. 微型飞行器的仿生流体力学[C]//空气动力学前沿研究论文集. 2003.
    [8] DIMOTAKIS P E. Turbulent mixing[J]. Annual Review of Fluid Mechanics, 2005, 37(1): 329-356. doi: 10.1146/annurev.fluid.36.050802.122015
    [9] DUSSAGE J P. Compressible turbulence and energetic scale: What is known from experiments in supersonic flow[J]. Flow Turbulence and Combusion, 2001, 66: 373~391. doi: 10.1023/A:1013585413220
    [10] 袁湘江, 张涵信. 激波分离等复杂流动现象对扰动波传播的影响[C]//近代空气动力学研讨会论文集. 2005.
    [11] STONE H A, STROOCK A D, AJDARI A. Engineering flows in small devices[J]. Annual Review of Fluid Mechanics, 2004, 36(1): 381-411. doi: 10.1146/annurev.fluid.36.050802.122124
    [12] HO C M, TAI Y C. Micro-electro-mechanical-systems (mems) and fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 579-612. doi: 10.1146/annurev.fluid.30.1.579
    [13] PEREIRA F, GHARIB M. Defocusing digital particle image velocimetry and the three dimensional characterization of 2-phase flows[J]. Measurement Science and Technology, 2002, 13: 683~694. doi: 10.1088/0957-0233/13/5/305
    [14] WILLERT C E, GHARIB M. Three-dimensional particle imaging with a single camera[J]. Experiments in Fluids, 1992, 12(6): 353-358. doi: 10.1007/bf00193880
    [15] WANG H L, HAN W, XU M. The measurement of water flow rates in the straight microchannel based on the scanning micro-PIV technique[C]//Proc of the 7th International Symposium on Precision Engineering Measurement and Instrumentation. 2011. doi: 10.1063/1.3651997
    [16] MENG H, HUSSAIN F. Holographic particle velocimetry: a 3D measurement technique for vortex interactions, coherent structures and turbulence[J]. Fluid Dynamics Research, 1991, 8(1-4): 33-52. doi: 10.1016/0169-5983(91)90029-i
    [17] ELSINGA G E, SCARANO F, WIENEKE B, et al. Tomographic particle image velocimetry[J]. Experiments in Fluids, 2006, 41(6): 933-947. doi: 10.1007/s00348-006-0212-z
    [18] ELSINGA G E, WIENEKE B, SCARANO F, et al. Assessment of Tomo-PIV for three-dimensional flows[C]//Proc of the 6th International Symposium on Particle Image Velocimetry. 2005.
    [19] TSAI R Y. An efficient and accurate camera calibration technique for 3D machine vision[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. 1986
    [20] SOLOFF S M, ADRIAN R J, LIU Z C. Distortion compensation for generalized stereoscopic particle image velocimetry[J]. Measurement Science and Technology, 1997, 8(12): 1441-1454. doi: 10.1088/0957-0233/8/12/008
    [21] SCARANO F. Tomographic PIV: principles and practice[J]. Measurement Science and Technology, 2013, 24(1): 012001. doi: 10.1088/0957-0233/24/1/012001
    [22] MICHAELIS D, NOVARA M, SCARANO F, et al. Comparison of volume reconstruction techniques at different particle densities[C]//Proc of the 15th International Symposium Applications of Laser Techniques to Fluid Mechanics. 2010.
    [23] WIENEKE B. Volume self-calibration for 3D particle image velocimetry[J]. Experiments in Fluids, 2008, 45(4): 549-556. doi: 10.1007/s00348-008-0521-5
    [24] DISCETTI S, ASTARITA T. The detrimental effect of increasing the number of cameras on self-calibration for tomographic PIV[J]. Measurement Science and Technology, 2014, 25(8): 084001. doi: 10.1088/0957-0233/25/8/084001
    [25] SCHANZ D, GESEMANN S, SCHRÖDER A, et al. Non-uniform optical transfer functions in particle imaging: calibration and application to tomographic reconstruction[J]. Measurement Science and Technology, 2013, 24(2): 024009. doi: 10.1088/0957-0233/24/2/024009
    [26] WORTH N A, NICKELS T B. Acceleration of Tomo-PIV by estimating the initial volume intensity distribution[J]. Experiments in Fluids, 2008, 45(5): 847-856. doi: 10.1007/s00348-008-0504-6
    [27] ATKINSON C H, DILLON-GIBBONS C J, HERPIN S, et al. Reconstruction techniques for tomographic PIV (tomo-PIV) of a turbulent boundary layer[C]//Proc of the 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics. 2008.
    [28] ATKINSON C H, BUCHMANN N, STANISLAS M, et al. Adaptive MLOS-SMART improved accuracy tomographic PIV[C]//Proc of the 15th International Symposium on Application of Laser Techniques to Fluid Mechanics Lisbon. 2010.
    [29] NOVARA M, BATENBURG K J, SCARANO F. Motion tracking-enhanced MART for tomographic PIV[J]. Measurement Science and Technology, 2010, 21(3): 035401. doi: 10.1088/0957-0233/21/3/035401
    [30] DISCETTI S, ASTARITA T. A fast multi-resolution approach to tomographic PIV[J]. Experiments in Fluids, 2012, 52(3): 765-777. doi: 10.1007/s00348-011-1119-x
    [31] DISCETTI S, NATALE A, ASTARITA T. Spatial filtering improved tomographic PIV[J]. Experiments in Fluids, 2013, 54(4): 1505. doi: 10.1007/s00348-013-1505-7
    [32] WANG H P, GAO Q, WEI R J, et al. Intensity-enhanced MART for tomographic PIV[J]. Experiments in Fluids, 2016, 57(5): 87. doi: 10.1007/s00348-016-2176-y
    [33] ATKINSON C, SORIA J. An efficient simultaneous reconstruction technique for tomographic particle image velocimetry[J]. Experiments in Fluids, 2009, 47(4-5): 553-568. doi: 10.1007/s00348-009-0728-0
    [34] THOMAS L, TREMBLAIS B, DAVID L. Optimization of the volume reconstruction for classical Tomo-PIV algorithms (MART, BIMART and SMART): synthetic and experimental studies[J]. Measurement Science and Technology, 2014, 25(3): 035303. doi: 10.1088/0957-0233/25/3/035303
    [35] CHAMPAGNAT F, CORNIC P, CHEMINET A, et al. Tomographic PIV: particles versus blobs[J]. Measurement Science and Technology, 2014, 25(8): 084002. doi: 10.1088/0957-0233/25/8/084002
    [36] DISCETTI S, ASTARITA T. Acceleration of Tomo-PIV by multigrid reconstruction schemes[C]//Proc of the 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics. 2010.
    [37] ELSINGA G E, WESTERWEEL J, SCARANO F, et al. On the velocity of ghost particles and the bias errors in Tomographic-PIV[J]. Experiments in Fluids, 2011, 50(4): 825-838. doi: 10.1007/s00348-010-0930-0
    [38] ELSINGA G E. Tomographic Particle Image Velocimetry and its application to turbulent boundary layers[D]. Melbourne: Delft University of Technology, 2008.
    [39] WORTH N A, NICKELS T B, SWAMINATHAN N. A tomographic PIV resolution study based on homogeneous isotropic turbulence DNS data[J]. Experiments in Fluids, 2010, 49(3): 637-656. doi: 10.1007/s00348-010-0840-1
    [40] 高琪, 王成跃, 王洪平, 等. 基于连续性条件的体PIV后处理技术[J]. 北京航空航天大学学报, 2013, 39(5): 693-696.

    GAO Q, WANG C Y, WANG H P, et al. Post-processing of volumetric PIV data based on continuity condition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5): 693-696.
    [41] HUNT J C R, WRAY A A, MOIN P. Eddies, streams, and convergence zones in turbulent flows[C]//Proc of the Studying Turbulence Using Numerical Simulation Databases. 1988.
    [42] CHONG M S, PERRY A E, CANTWELL B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(5): 765-777. doi: 10.1063/1.857730
    [43] ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387: 353-396. doi: 10.1017/s002211209900467x
    [44] JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285: 69-94. doi: 10.1017/s0022112095000462
    [45] GAO Q, WANG H P, WANG J J. A single camera volumetric particle image velocimetry and its application[J]. Science China Technological Sciences, 2012, 55(9): 2501-2510. doi: 10.1007/s11431-012-4921-7
    [46] 丁俊飞, 许晟明, 施圣贤. 光场单相机三维流场测试技术[J]. 实验流体力学, 2016, 30(6): 51-58. doi: 10.11729/syltlx20160141

    DING J F, XU S M, SHI S X. Light field volumetric particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 51-58. doi: 10.11729/syltlx20160141
    [47] SHI S X, WANG J H, DING J F, et al. Parametric study on light field volumetric particle image velocimetry[J]. Flow Measurement and Instrumentation, 2016, 49: 70-88. doi: 10.1016/j.flowmeasinst.2016.05.006
    [48] FAHRINGER T W, LYNCH K P, THUROW B S. Volumetric particle image velocimetry with a single plenoptic camera[J]. Measurement Science and Technology, 2015, 26(11): 115201. doi: 10.1088/0957-0233/26/11/115201
    [49] 梅迪, 丁俊飞, 施圣贤. 基于双光场相机的高分辨率光场三维PIV技术[J]. 实验流体力学, 2019, 33(2): 57-65. doi: 10.11729/syltlx20180165

    MEI D, DING J F, SHI S X. High resolution volumetric light field particle image velocimetry with dual plenoptic cameras[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 57-65. doi: 10.11729/syltlx20180165
    [50] SCARANO F, ELSINGA G E, BOCCI E, et al. Investigation of 3-D coherent structures in the turbulent cylinder wake using Tomo-PIV[C]//Proc of the 13th International Symposium on Application of Laser Techniques to Fluid Mechanics. 2006.
    [51] HAIN R, KÄHLER C J, MICHAELIS D. Tomographic and time resolved PIV measurements on a finite cylinder mounted on a flat plate[J]. Experiments in Fluids, 2008, 45(4): 715-724. doi: 10.1007/s00348-008-0553-x
    [52] GHAEMI S, SCARANO F. Counter-hairpin vortices in the turbulent wake of a sharp trailing edge[J]. Journal of Fluid Mechanics, 2011, 689: 317-356. doi: 10.1017/jfm.2011.431
    [53] 许相辉, 蒋甲利, 牛中国, 等. 圆柱尾流场的Tomo-PIV测量[J]. 实验流体力学, 2015, 29(5): 60-64. doi: 10.11729/syltlx20150022

    XU X H, JIANG J L, NIU Z G, et al. Measurements of cylinder's wake by Tomo-PIV[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(5): 60-64. doi: 10.11729/syltlx20150022
    [54] 高琪, 王洪平. 层析PIV技术及其合成射流测量[J]. 中国科学(技术科学), 2013, 43(7): 828-835. doi: 10.1360/092013-360

    GAO Q, WANG H P.Tomographic PIV technique and the measurement of synthetic jet[J]. China Science: Technical Science, 2013, 43(7): 825-835. doi: 10.1360/092013-360
    [55] ZHU H Y, WANG C Y, WANG H P, et al. Tomographic PIV investigation on 3D wake structures for flow over a wall-mounted short cylinder[J]. Journal of Fluid Mechanics, 2017, 831: 743-778. doi: 10.1017/jfm.2017.647
    [56] ELSINGA G E, WIENEKE B, SCARANO F, et al. Tomographic 3D-PIV and applications[J]. Application Physics. 2008, 112: 103-125. doi: 10.1007/S00348-009-0629-2
    [57] 王洪平, 高琪, 魏润杰, 等. 基于层析PIV的湍流边界层展向涡研究[J]. 实验流体力学, 2016, 30(2): 59-66. doi: 10.11729/syltlx20150086

    WANG H P, GAO Q, WEI R J, et al. Study of spanwise vortices in turbulent boundary layer flow based on tomographic PIV[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 59-66. doi: 10.11729/syltlx20150086
    [58] 王洪平, 高琪, 王晋军. 基于层析PIV的湍流边界层涡结构统计研究[J]. 中国科学(物理学力学天文学), 2015, 45(12): 59-72. doi: 10.1360/SSPMA2015-00480

    WANG H P, GAO Q, WANG J J. The statistical study of vortex structure in turbulent boundary layer flow based on Tomographic PIV[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(12): 59-72. doi: 10.1360/SSPMA2015-00480
    [59] 田海平, 杨绍琼, 李山. 壁湍流相干结构局部动力学模型的实验研究[C]//第九届全国实验流体力学学术会议论文集. 2013.

    TIAN H P, YANG S Q, LI S. Experimental study on the local dynamics model of wall turbulent coherent structures[C]//Proc of the 9th national conference on experimental fluid mechanics. 2013. doi: 10.1360/SSPMA2015-00480
    [60] TANG Z Q, JIANG N, SCHRÖDER A, et al. Tomographic PIV investigation of coherent structures in a turbulent boundary layer flow[J]. Acta Mechanica Sinica, 2012, 28(3): 572-582. doi: 10.1007/s10409-012-0082-y
    [61] YANG S Q, LI S, TIAN H P, et al. Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets[J]. Acta Mechanica Sinica, 2016, 32(2): 284-294. doi: 10.1007/s10409-015-0541-3
    [62] 赵洲, 丁俊飞, 施圣贤. 基于单相机光场PIV的逆压湍流边界层测量[J]. 实验流体力学, 2019, 33(2): 66-71. doi: 10.11729/syltlx20180192

    ZHAO Z, DING J F, SHI S X. Volumetric measurement of an adverse pressure-pressure-gradient turbulent boundary layer using single-camera light field PIV[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 66-71. doi: 10.11729/syltlx20180192
    [63] HUMBLE R A, ELSINGA G E, SCARANO F, et al. Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2009, 622: 33-62. doi: 10.1017/s0022112008005090
    [64] YE Q Q, SCHRIJER F, SCARANO F. Tomographic PIV measurement of hypersonic boundary layer transition past a micro-ramp[C]//Proc of the 47th AIAA Fluid Dynamics Conference. 2017. doi: 10.2514/6.2017-4512
    [65] 李晓辉, 王宏伟, 魏连风, 等. 基于Tomo-PIV的翼型小肋减阻尾流场测量[C]//首届中国空气动力学大会论文集. 2018.

    LI X H, WANG H W, WEI L F, et al. The measurement of wake flow on airfoil drag reduction of riblets using Tomo-PIV[C]//Proc of the 1st aerodynamics conference of china. 2018.
    [66] STOLT A, ESTEVADEORDAL J, KRECH J, et al. A tomographic PIV and TSP study of leading-edge structures on stall behaviors of NACA0015[C]//Proc of the 55th AIAA Aerospace Sciences Meeting. 2017. doi: 10.2514/6.2017-0476
    [67] AVALLONE F, ARCELEÓN C, PRÖBSTING S, et al. Tomographic-PIV investigation of the flow over serrated trailing-edges[R]. AIAA 2016-1012, 2016. doi: 10.251416.2017-0476
    [68] FELLI M, FALCHI M, DUBBIOSO G. Experimental approaches for the diagnostics of hydroacoustic problems in naval propulsion[J]. Ocean Engineering, 2015, 106: 1-19. doi: 10.1016/j.oceaneng.2015.06.049
    [69] WEINKAUFF J, MICHAELIS D, DREIZLER A, et al. Tomographic PIV measurements in a turbulent lifted jet flame[J]. Experiments in Fluids, 2013, 54(12): 1624. doi: 10.1007/s00348-013-1624-1
    [70] PETERSON B, BAUM E, DING C P, et al. Assessment and application of tomographic PIV for the spray-induced flow in an IC engine[J]. Proceedings of the Combustion Institute, 2017, 36(3): 3467-3475. doi: 10.1016/j.proci.2016.06.114
    [71] VIOLATO D, MOORE P, SCARANO F. Lagrangian and Eulerian pressure field evaluation of rod-airfoil flow from time-resolved tomographic PIV[J]. Experiments in Fluids, 2011, 50(4): 1057-1070. doi: 10.1007/s00348-010-1011-0
    [72] VIOLATO D, SCARANO F. Three-dimensional evolution of flow structures in transitional circular and chevron jets[J]. Physics of Fluids, 2012, 24(4): 049901. doi: 10.1063/1.3665141
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1550
  • HTML全文浏览量:  252
  • PDF下载量:  266
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-28
  • 修回日期:  2020-03-08
  • 刊出日期:  2021-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日