留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扰动激波冲击界面不稳定性:反射激波效应

权通 廖深飞 邹立勇 邱华

权通, 廖深飞, 邹立勇, 等. 扰动激波冲击界面不稳定性:反射激波效应[J]. 实验流体力学, 2020, 34(5): 12-19. doi: 10.11729/syltlx20200019
引用本文: 权通, 廖深飞, 邹立勇, 等. 扰动激波冲击界面不稳定性:反射激波效应[J]. 实验流体力学, 2020, 34(5): 12-19. doi: 10.11729/syltlx20200019
QUAN Tong, LIAO Shenfei, ZOU Liyong, et al. Instability of an interface subjected to a perturbed shock: reflected shock effects[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 12-19. doi: 10.11729/syltlx20200019
Citation: QUAN Tong, LIAO Shenfei, ZOU Liyong, et al. Instability of an interface subjected to a perturbed shock: reflected shock effects[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 12-19. doi: 10.11729/syltlx20200019

扰动激波冲击界面不稳定性:反射激波效应

doi: 10.11729/syltlx20200019
基金项目: 

国家自然科学基金 11672277

国家自然科学基金 11602247

国家自然科学基金 51676164

国家自然科学基金 91952205

详细信息
    作者简介:

    权通(1996-), 男, 陕西西安人, 硕士研究生。研究方向:Richtmyer-Meshkov不稳定性研究。通信地址:陕西省西安市西北工业大学动力与能源学院(710072)。E-mail:quantong@mail.nwpu.edu.cn

    通讯作者:

    邹立勇  E-mail: liyong.zou@hotmail.com

  • 中图分类号: O354.5

Instability of an interface subjected to a perturbed shock: reflected shock effects

  • 摘要: 通过平面激波绕刚体圆柱的方法形成扰动激波,采用无膜技术形成N2/SF6均匀界面,在竖式激波管中开展了扰动激波冲击界面Richtmyer-Meshkov (RM)不稳定性实验研究。针对3种不同的无量纲距离η(圆柱到界面距离与圆柱直径之比)情形,利用高速纹影技术及平面Mie散射技术,获得了反射激波二次冲击作用下的界面演化图像。前期工作(邹立勇等,2017)显示,入射激波冲击后,界面发展为包括中心气腔和两侧台阶的"Λ"形结构。研究结果表明:反射激波二次冲击后,"Λ"形界面首先经历相位反转,然后扰动逐渐发展增强。在η=2.0情形,界面演化为气泡,而当η=3.3和4.0时,在整体的气泡结构之外,界面中心发展为尖钉结构。获得了反射激波作用后的混合区宽度,并与理论模型结果进行了比较。在界面演化线性阶段,Meyer-Blewett(MB)线性模型结果和实验结果吻合较好。在界面演化非线性阶段,Dimonte-Ramaprabhu (DR)模型结果和实验结果吻合较好。特别地,当η=4.0时,理论与实验结果差别最小。
  • 图  1  竖式激波管示意图

    Figure  1.  Schematic of the vertical shock tube

    图  2  两种测试技术示意图

    Figure  2.  Schematics of two diagnostic techniques

    图  3  高速纹影技术获得的入射阶段和反射阶段N2/SF6界面演化图像(η =4.0)

    Figure  3.  Schlieren images showing the evolution of N2/SF6 interface in the incident and the reflected stages (η =4.0)

    图  4  Mie散射获得的反射激波作用下N2/SF6界面演化图像。实线圈区域为气腔,虚线圆圈区域为台阶,a为混合区宽度

    Figure  4.  Planar Mie scattering sequences showing the evolution of N2/SF6 interface impacted by the reflected shock. The solid circles indicate the N2 cavity and the dashed circles highlight the interface steps, a refers to the mixing width

    图  5  反射激波作用下界面斜压涡量沉积示意图

    Figure  5.  Schematic of baroclinic vorticity deposition on the interface under the impact of the reflected shock

    图  6  反射激波到达前的扰动界面形状

    Figure  6.  The shape of interface immediately before the arrival of the reflected shock

    图  7  混合区宽度随时间变化曲线:实验和MB模型对比

    Figure  7.  Comparison of mixing width between the experimental results and the MB model

    图  8  混合区宽度随时间变化曲线:实验和DR模型对比

    Figure  8.  Comparison of mixing width between the experimental results and the DR model

    表  1  3种情形的实验参数

    Table  1.   Experimental parameters for three cases

    Case d/mm l/mm η
    1 10 20 2.0
    2 6 20 3.3
    3 10 40 4.0
    下载: 导出CSV

    表  2  “Λ”形界面参数

    Table  2.   Parameters of "Λ" shaped interface

    η a0/mm λ0/mm k/mm-1 θ0/ (°) a0/λ0
    2.0 10.2 65. 9 0.09 116.7 0.15
    3.3 7.0 54.7 0.11 125.7 0.13
    4.0 8.2 105.8 0.06 145.5 0.08
    下载: 导出CSV

    表  3  理论模型增长率

    Table  3.   Growth rate calculated by theoretical model

    η v0MB/(m·s-1) R v0DR/(m·s-1)
    2.0 53.99 0.82 44.27
    3.3 44.83 0.85 38.11
    4.0 26.74 0.92 24.60
    下载: 导出CSV
  • [1] RICHTMYER R D. Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure and Applied Mathematics, 1960, 13(2):297-319. doi: 10.1002/cpa.3160130207
    [2] MESHKOV E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dynamics, 1969, 4(5):101-104. doi: 10.1007/BF01015969
    [3] ARNETT D. The role of mixing in astrophysics[J]. The Astrophysical Journal Letters Supplement Series, 2000, 127(2):213-217. doi: 10.1086/313364
    [4] AMENDT P, COLVIN J D, TIPTON R E, et al. Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility:design and analysis[J]. Physics of Plasmas, 2002, 9(5):2221-2233. doi: 10.1063/1.1459451
    [5] LINDL J, LANDEN O, EDWARDS J, et al. Review of the national ignition campaign 2009-2012[J]. Physics of Plasmas, 2014, 21(2):020501. doi: 10.1063/1.4865400
    [6] 古滨, 李炳南, 姚熊亮, 等.水下冲击波作用下双层壳结构响应特征研究[J].兵器装备工程学报, 2019, 40(11):11-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scbgxb201911003

    GU B, LI B N, YAO X L, et al. Research of impact response of double-shell based on underwater explosion shock wave[J]. Journal of Sichuan Ordnance, 2019, 40(11):11-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scbgxb201911003
    [7] 姬建荣, 苏健军, 陈君, 等.动爆冲击波传播特性实验研究[J].兵器装备工程学报, 2019, 40(12):20-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scbgxb201912005

    JI J R, SU J J, CHEN J, et al. Experimental study on propagation characteristics of dynamic blast wave[J]. Journal of Sichuan Ordnance, 2019, 40(12):20-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scbgxb201912005
    [8] BROUILLETTE M. The Richtmyer-Meshkov instability[J]. Annual Review of Fluid Mechanics, 2002, 34(1):445-468. doi: 10.1146/annurev.fluid.34.090101.162238
    [9] DIMOTAKIS P E. Turbulent mixing[J]. Annual Review of Fluid Mechanics, 2005, 37(1):329-356. http://www.ams.org/mathscinet-getitem?mr=2115346
    [10] RANJAN D, OAKLEY J, BONAZZA R. Shock-bubble interactions[J]. Annual Review of Fluid Mechanics, 2011, 43(43):117-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3ca52260f085621b571fe8f4c47e6278
    [11] ZHAI Z G, ZOU L Y, WU Q, et al. Review of experimental Richtmyer-Meshkov instability in shock tube:from simple to complex[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2018, 232(16):2830-2849. doi: 10.1177/0954406217727305
    [12] ANDRONOV V, BAKHRAKH S, MESHKOV E, et al. Tur-bulent mixing at contact surface accelerated by shock waves[J]. Soviet Journal of Experimental and Theoretical Physics, 1976, 44(2):424-427. http://adsabs.harvard.edu/abs/1976JETP...44..424A
    [13] LATINI M, SCHILLING O, DON W S. High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability:comparison to experimental data and to amplitude growth model predictions[J]. Physics of Fluids, 2007, 19(2):024104. doi: 10.1063/1.2472508
    [14] HILL D J, PANTANO C, PULLIN D. Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock[J]. Journal of Fluid Mechanics, 2006, 557:29-61. doi: 10.1017/S0022112006009475
    [15] SI T, ZHAI Z G, YANG J M, et al. Experimental investi-gation of reshocked spherical gas interfaces[J]. Physics of Fluids, 2012, 24(5):054101. doi: 10.1063/1.4711866
    [16] BALAKUMAR B J, ORLICZ G C, RISTORCELLI J R, et al. Turbulent mixing in a Richtmyer-Meshkov fluid layer after reshock:velocity and density statistics[J]. Journal of Fluid Mechanics, 2012, 696:67-93. doi: 10.1017/jfm.2012.8
    [17] 张赋, 翟志刚, 司廷, 等.反射激波作用下重气柱界面演化的PIV研究[J].实验流体力学, 2014, 28(5):13-17. http://www.syltlx.com/CN/abstract/abstract10767.shtml

    ZHANG F, ZHAI Z G, SI T, et al. Experimental study on the evolution of heavy gas cylinder under reshock condition by PIV method[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(5):13-17. http://www.syltlx.com/CN/abstract/abstract10767.shtml
    [18] 何惠琴, 翟志刚, 司廷, 等.反射激波作用下两种重气柱界面不稳定性实验研究[J].实验流体力学, 2014, 28(6):56-60. http://www.syltlx.com/CN/abstract/abstract10790.shtml

    HE H Q, ZHAI Z G, SI T, et al. Experimental study on thereshocked RM instability of two kinds of heavy gas cylinder[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6):56-60. http://www.syltlx.com/CN/abstract/abstract10790.shtml
    [19] ZOU L Y, LIAO S F, LIU C L, et al. Aspect ratio effect on shock-accelerated elliptic gas cylinders[J]. Physics of Fluids, 2016, 28(3):036101. doi: 10.1063/1.4943127
    [20] ISHIZAKI R, NISHIHARA K, SAKAGAMI H, et al. Instability of a contact surface driven by a nonuniform shock wave[J]. Physical Review E, 1996, 53(6):r5592. doi: 10.1103/PhysRevE.53.R5592
    [21] 刘金宏, 邹立勇, 曹仁义, 等.绕射激波和反射激波作用下N2/SF6界面R-M不稳定性实验研究[J].力学学报, 2014, 46(3):475-479. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201403016

    LIU J H, ZOU L Y, CAO R Y, et al. Experimentally study of the Richtmyer-Meshkov instability at N2/SF6 flat interfaces by diffracted incident shock waves and reshock[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3):475-479. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201403016
    [22] ZOU L Y, LIU J H, LIAO S F, et al. Richtmyer-Meshkov instability of a flat interface subjected to a rippled shock wave[J]. Physical Review E, 2017, 95(1):013107. doi: 10.1103/PhysRevE.95.013107
    [23] LIAO S F, ZHANG W B, CHEN H, et al. Atwood number effects on the instability of a uniform interface driven by a perturbed shock wave[J]. Physical Review E, 2019, 99(1):013103. http://www.researchgate.net/publication/330229413_Atwood_number_effects_on_the_instability_of_a_uniform_interface_driven_by_a_perturbed_shock_wave
    [24] ZHAI Z G, LIANG Y, LIU L L, et al. Interaction of rippled shock wave with flat fast-slow interface[J]. Physics of Fluids, 2018, 30(4):046104. doi: 10.1063/1.5024774
    [25] ZOU L Y, ALMAROUF M, CHENG W, et al. Richtmyer-Meshkov instability of an unperturbed interface subjected to a diffracted convergent shock[J]. Journal of Fluid Mechanics, 2019, 879:448-467. doi: 10.1017/jfm.2019.694
    [26] COLLINS B D, JACOBS J W. PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF6 interface[J]. Journal of Fluid Mechanics, 2002, 464:113-136. doi: 10.1017/S0022112002008844
    [27] ZOU L Y, LIU C L, TAN D W, et al. On interaction of shock wave with elliptic gas cylinder[J]. Journal of Visualization, 2010, 13(4):347-353. doi: 10.1007/s12650-010-0053-y
    [28] RIGHTLEY P M, VOROBIEFF P, BENJAMIN R F. Evolution of a shock-accelerated thin fluid layer[J]. Physics of Fluids, 1997, 9(6):1770-1782. doi: 10.1063/1.869299
    [29] MIKAELIAN K O. Functions sinKx and cosKx[J]. Journal of Physics A:Mathematical and General, 1993, 26(7):1673-1689. doi: 10.1088/0305-4470/26/7/023
    [30] MEYER K, BLEWETT P J. Numerical investigation of the stability of a shock-accelerated interface between two fluids[J]. Physics of Fluids, 1972, 15(5):753-759. doi: 10.1063/1.1693980
    [31] DIMONTE G, RAMAPRABHU P. Simulations and model of the nonlinear Richtmyer-Meshkov instability[J]. Physics of Fluids, 2010, 22(1):014104. doi: 10.1063/1.3276269
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  159
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-13
  • 修回日期:  2020-03-17
  • 刊出日期:  2020-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日