留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子力显微镜的生物力学实验方法和研究进展

关东石 李航宇 童彭尔

关东石, 李航宇, 童彭尔. 原子力显微镜的生物力学实验方法和研究进展[J]. 实验流体力学, 2020, 34(2): 57-66. doi: 10.11729/syltlx20200026
引用本文: 关东石, 李航宇, 童彭尔. 原子力显微镜的生物力学实验方法和研究进展[J]. 实验流体力学, 2020, 34(2): 57-66. doi: 10.11729/syltlx20200026
GUAN Dongshi, LI Hangyu, TONG Penger. Experimental methods and recent progress in biomechanics using atomic force microscopy[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 57-66. doi: 10.11729/syltlx20200026
Citation: GUAN Dongshi, LI Hangyu, TONG Penger. Experimental methods and recent progress in biomechanics using atomic force microscopy[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 57-66. doi: 10.11729/syltlx20200026

原子力显微镜的生物力学实验方法和研究进展

doi: 10.11729/syltlx20200026
基金项目: 

国家自然科学基金 11972351

详细信息
    作者简介:

    关东石(1987-), 男, 吉林通化人, 中国科学院力学研究所非线性力学国家重点实验室项目研究员。研究方向:微纳尺度流体力学及其交叉和应用。通信地址:北京市海淀区北四环西路15号中国科学院力学研究所非线性力学国家重点实验室(100190)。E-mail:dsguan@imech.ac.cn

    通讯作者:

    关东石, E-mail:dsguan@imech.ac.cn

  • 中图分类号: O35

Experimental methods and recent progress in biomechanics using atomic force microscopy

  • 摘要: 作为微纳尺度的力学工具,原子力显微镜技术被越来越多地应用于生物力学实验研究,推动了该交叉学科领域的发展。利用多种测量模式与改进的探针,原子力显微镜可以在液体中对亚细胞、细胞、组织等多个尺度的生命物质进行力学测量,研究其在衰老、癌变等生命过程中力学性质的动态变化。本文综述了原子力显微镜的力学测量原理、生物力学的实验方法,以及在单细胞的整体与局部、液-液相分离液滴、上皮囊泡组织等力学测量中的应用,分析了复杂流体与微纳尺度流动对实验测量的影响,并对该领域的发展进行了展望。
  • 图  1  原子力显微镜示意图

    Figure  1.  A schematic of an AFM

    图  2  振幅A和相位φ在共振频率附近随驱动频率ω的变化

    Figure  2.  The amplitude A and phase φ as a function of driving frequency ω near resonance ω0

    图  3  各种原子力显微镜探针[36]

    Figure  3.  Different types of AFM probes[36]

    图  4  胶体探针力压痕实验

    Figure  4.  The force-indentation experiment with a colloidal probe

    图  5  利用胶体探针对液-液相分离所形成的神经元突触后致密区的蛋白质液滴进行的力学测量[35]

    Figure  5.  Mechanical measurement of the postsynaptic density protein droplets formed by liquid-liquid phase separation using an AFM colloidal probe[35]

    图  6  球形上皮囊泡的荧光与明场图像以及力压痕曲线[34]

    Figure  6.  The fluorescence and bright-flied images and the force-indentation curves of the epithelial cyst[34]

    图  7  在活细胞上测量力反馈函数K* (D) [36]

    Figure  7.  Measured response functionK* (D)for a living cell[36]

    图  8  原子力显微镜通过双频调制同时进行形貌扫描与黏弹性测量的控制流程图[36]

    Figure  8.  A flowchart showing the AFM controls for simultaneous topographic and viscoelastic mapping with dual-frequency modulations[36]

    图  9  原子力显微镜测得的活细胞三维形貌和弹性图像[36]

    Figure  9.  AFM images of three-dimensional topography and elasticity of a living cell at interphase and mitosis[36]

  • [1] INGBER D E. Tensegrity:The architectural basis of cellular mechanotransduction[J]. Annual Review of Physiology, 1997, 59(1):575-599. doi: 10.1146/annurev.physiol.59.1.575
    [2] VOGEL V, SHEETZ M. Local force and geometry sensing regulate cell functions[J]. Nature Reviews Molecular Cell Biology, 2006, 7(4):265-275. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026765216/
    [3] JANMEY P A, MCCULLOCH C A. Cell Mechanics:Integrat-ing cell responses to mechanical stimuli[J]. Annual Review of Biomedical Engineering, 2007, 9(1):1-34. doi: 10.1146/annurev.bioeng.9.060906.151927
    [4] KASZA K E, ROWAT A C, LIU J, et al. The cell as a material[J]. Current Opinion in Cell Biology, 2007, 19(1):101-107. doi: 10.1016/j.ceb.2006.12.002
    [5] MOEENDARBARY E, HARRIS A R. Cell mechanics:principles, practices, and prospects[J]. Wiley Interdisciplinary Reviews:Systems Biology and Medicine, 2014, 6(5):371-388. doi: 10.1002/wsbm.1275
    [6] FLETCHER D A, MULLINS R D. Cell mechanics and the cytoskeleton[J]. Nature, 2010, 463(7280):485-492. doi: 10.1038/nature08908
    [7] CHEN D T, WEEKS E R, CROCKER J C, et al. Rheological microscopy:local mechanical properties from microrheology[J]. Physical Review Letters, 2003, 90(10):108301. doi: 10.1103/PhysRevLett.90.108301
    [8] LEKKA M, LAIDLER P, GIL D, et al. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy[J]. European Biophysics Journal, 1999, 28(4):312-316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9c29a4b8188664c47afa8501decfdbce
    [9] NAGAYAMA M, HAGA H, KAWABATA K. Drastic change of local stiffness distribution correlating to cell migration in living fibroblasts[J]. Cell Motility and the Cytoskeleton, 2001, 50(4):173-179. doi: 10.1002/cm.10008
    [10] GIRARD P P, CAVALCANTI-ADAM E A, KEMKEMER R, et al. Cellular chemomechanics at interfaces:sensing, integra-tion and response[J]. Soft Matter, 2007, 3(3):307. doi: 10.1039/b614008d
    [11] HOCHMUTH R M. Micropipette aspiration of living cells[J]. Journal of Biomechanics, 2000, 33(1):15-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7ae1401bcb1075d0d828e9512469bda9
    [12] SÁNCHEZ D, JOHNSON N, LI Chao, et al. Noncontact measurement of the local mechanical properties of living cells using pressure applied via a pipette[J]. Biophysical Journal, 2008, 95(6):3017-3027. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a91f48d7e1977917b5221e016d547423
    [13] MOEENDARBARY E, VALON L, FRITZSCHE M, et al. The cytoplasm of living cells behaves as a poroelastic material[J]. Nature Materials, 2013, 12(3):253-261. doi: 10.1038/nmat3517
    [14] AMBLARD F, MAGGS A C, YURKE B, et al. Subdiffusion and anomalous local viscoelasticity in actin networks[J]. Physical Review Letters, 1996, 77(21):4470-4473. doi: 10.1103/PhysRevLett.77.4470
    [15] DAI J W, SHEETZ M P. Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers[J]. Biophysical Journal, 1995, 68(3):988-996. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1281822
    [16] HOFFMAN B D, MASSIERA G, VAN CITTERS K M, et al. The consensus mechanics of cultured mammalian cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27):10259-10264. doi: 10.1073/pnas.0510348103
    [17] MVLLER D J, DUFRÊNE Y F. Atomic force microscopy:a nanoscopic window on the cell surface[J]. Trends in Cell Biology, 2011, 21(8):461-469. doi: 10.1016/j.tcb.2011.04.008
    [18] SOKOLOV I, DOKUKIN M E, GUZ N V. Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments[J]. Methods, 2013, 60(2):202-213. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=288dba8df2c7972743aa78f753681308
    [19] STEWART M P, HELENIUS J, TOYODA Y, et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding[J]. Nature, 2011, 469(7329):226-230. doi: 10.1038/nature09642
    [20] FISCHER-FRIEDRICH E, TOYODA Y, CATTIN C J, et al. Rheology of the active cell cortex in mitosis[J]. Biophysical Journal, 2016, 111(3):589-600. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a4e6f9dcfa4430841d084fa069b7fe44
    [21] MATZKE R, JACOBSON K, RADMACHER M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells[J]. Nature Cell Biology, 2001, 3(6):607-610. doi: 10.1038/35078583
    [22] STEWART M P, TOYODA Y, HYMAN A A, et al. Force probing cell shape changes to molecular resolution[J]. Trends in Biochemical Sciences, 2011, 36(8):444-450. doi: 10.1016/j.tibs.2011.05.001
    [23] CAPPELLA B, DIETLER G. Force-distance curves by atomic force microscopy[J]. Surface Science Reports, 1999, 34(1-3):1-104. doi: 10.1016/S0167-5729(99)00003-5
    [24] WANG Y J, XU Z L, SHENG P, et al. Electric-field-induced forces between two surfaces filled with an insulating liquid:the role of adsorbed water[J]. The European Physical Journal Applied Physics, 2014, 66(3):31301. doi: 10.1051/epjap/2014130388
    [25] KOHOUTEK J, DEY D, BONAKDAR A, et al. Opto-mechanical force mapping of deep subwavelength plasmonic modes[J]. Nano Letters, 2011, 11(8):3378-3382. doi: 10.1021/nl201780y
    [26] MA D K, GARRETT J L, MUNDAY J N. Quantitative measurement of radiation pressure on a microcantilever in ambient environment[J]. Applied Physics Letters, 2015, 106(9):091107. doi: 10.1063/1.4914003
    [27] GUAN D S, HANG Z H, MARCET Z, et al. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM[J]. Scientific Reports, 2015, 5:16216. doi: 10.1038/srep16216
    [28] WANG Y J, GUO S, CHEN H Y, et al. Understanding contact angle hysteresis on an ambient solid surface[J]. Physical Review E, 2016, 93(5):052802. doi: 10.1103/PhysRevE.93.052802
    [29] XIONG X, GUO S, XU Z, et al. Development of an atomic-force-microscope-based hanging-fiber rheometer for interfacial microrheology[J]. Physical Review E, 2009, 80(6 Pt 1):061604. http://adsabs.harvard.edu/abs/2009PhRvE..80f1604X
    [30] GUAN D S, WANG Y J, CHARLAIX E, et al. Asymmetric and speed-dependent capillary force hysteresis and relaxation of a suddenly stopped moving contact line[J]. Physical Review Letters, 2016, 116(6):066102. doi: 10.1103/PhysRevLett.116.066102
    [31] GUAN D S, WANG Y J, CHARLAIX E, et al. Simultaneous observation of asymmetric speed-dependent capillary force hysteresis and slow relaxation of a suddenly stopped moving contact line[J]. Physical Review E, 2016, 94(4):042802. doi: 10.1103/PhysRevE.94.042802
    [32] GUAN D S, BARRAUD C, CHARLAIX E, et al. Noncontact viscoelastic measurement of polymer thin films in a liquid medium using long-needle atomic force microscopy[J]. Langmuir, 2017, 33:1385-1390. doi: 10.1021/acs.langmuir.6b04066
    [33] SHU Y W, CHAN H N, GUAN D S, et al. A simple fabricated thickness-based stiffness gradient for cell studies[J]. Science Bulletin, 2017, 62(3):222-228. doi: 10.1016/j.scib.2016.12.012
    [34] SHEN Y S, GUAN D S, SERIEN D, et al. Mechanical characterization of microengineered epithelial cysts by using atomic force microscopy[J]. Biophysical Journal, 2017, 112(2):398-409. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b2eeb28b2ccc894b87afd81db78206c
    [35] ZENG M L, CHEN X D, GUAN D S, et al. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity[J]. Cell, 2018, 174(5):1172-1187. doi: 10.1016/j.cell.2018.06.047
    [36] GUAN D S, CHARLAIX E, QI R Z, et al. Noncontact viscoelastic imaging of living cells using a long-needle atomic force microscope with dual-frequency modulation[J]. Physical Review Applied, 2017, 8(4):044010. doi: 10.1103/PhysRevApplied.8.044010
    [37] 龙勉.细胞-分子层次的多尺度力学-化学-生物学耦合[J].医用生物力学, 2016, 31(4):327-332. http://d.old.wanfangdata.com.cn/Periodical/yyswlx201604005

    LONG M. Multiscale mechano-chemo-biological coupling at cellular and molecular levels[J]. Journal of Medical Biomech-anics, 31(4):327-332. http://d.old.wanfangdata.com.cn/Periodical/yyswlx201604005
    [38] 陈恩惠, 杨锦鸿, 李栋, 等.软物质中的理性连续介质力学基础[J].物理学报, 2016, 65(18):79-100. http://d.old.wanfangdata.com.cn/Periodical/wlxb201623036

    CHEN E H, YANG J H, LI D, et al.On the theoretical basis of rational continuum mechanics in softmatter[J]. Acta Physica Sinica, 2016, 65(18):79-100. http://d.old.wanfangdata.com.cn/Periodical/wlxb201623036
    [39] 姜宗来.从生物力学到力学生物学的进展[J].力学进展, 2017, 47(1):309-332. http://d.old.wanfangdata.com.cn/Periodical/lxjz201701009

    JIANG Z L. Advance from biomechanics to mechanobiology[J]. Advances In Mechanics, 2017, 47(1):309-332. http://d.old.wanfangdata.com.cn/Periodical/lxjz201701009
    [40] BUTT H J, JASCHKE M. Calculation of thermal noise in atomic force microscopy[J]. Nanotechnology, 1999, 6(1):1.
    [41] JANSHOFF A, NEITZERT M, OBERDÖRFER Y, et al. Force spectroscopy of molecular systems-single molecule spectroscopy of polymers and biomolecules[J]. Angewandte Chemie (International Edition), 2000, 39(18):3212-3237. https://www.deepdyve.com/lp/wiley/force-spectroscopy-of-molecular-systems-single-molecule-spectroscopy-SN9is3RHi0
    [42] LI M, TANG H X, ROUKES M L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications[J]. Nature Nanotechnology, 2007, 2(2):114-120. doi: 10.1038/nnano.2006.208
    [43] GARCÍA R, RUBÉN P. Dynamic atomic force microscopy methods[J]. Surface Science Reports, 2002, 47(6-8):197-301. doi: 10.1016/S0167-5729(02)00077-8
    [44] WALTERS D A, CLEVELAND J P, THOMSON N H, et al. Short cantilevers for atomic force microscopy[J]. Review of Scientific Instruments, 1996, 67(10):3583-3590. doi: 10.1063/1.1147177
    [45] BUTT H, CAPPELLA B, KAPPL M. Force measurements with the atomic force microscope:Technique, interpretation and applications[J]. Surface Science Reports, 2005, 59(1):1-152. https://www.sciencedirect.com/science/article/pii/S0167572905000488
    [46] CROSS S E, JIN Y S, RAO J Y, et al. Nanomechanical analysis of cells from cancer patients[J]. Nature Nanotechnology, 2007, 2(12):780-783. doi: 10.1038/nnano.2007.388
    [47] HERTZ H. On the contact of elastic solids[J]. Journal für die Reine und Angewandte Mathematik, 1882, 92:156-171. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0805.0712
    [48] KOLLMANNSBERGER P, FABRY B. Linear and nonlinear rheology of living cells[J]. Annual Review of Materials Re-search, 2011, 41(1):75-97. doi: 10.1146/annurev-matsci-062910-100351
    [49] BRANGWYNNE C P, ECKMANN C R, COURSON D S, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation[J]. Science, 2009, 324(5935):1729-1732. doi: 10.1126/science.1172046
    [50] BANANI S F, LEE H O, HYMAN A A, et al. Biomolecular condensates:organizers of cellular biochemistry[J]. Nature Reviews Molecular Cell Biology, 2017, 18(5):285-298. doi: 10.1038/nrm.2017.7
    [51] LEROY S, CHARLAIX E. Hydrodynamic interactions for the measurement of thin film elastic properties[J]. Journal of Fluid Mechanical, 2011, 674:389-407. doi: 10.1017/S0022112010006555
    [52] BRENNER H. The slow motion of a sphere through a viscous fluid towards a plane surface[J]. Chemical Engineering Science, 1961, 16:241-251. doi: 10.1016-0009-2509(61)80035-3/
  • 加载中
图(9)
计量
  • 文章访问数:  492
  • HTML全文浏览量:  253
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-01
  • 修回日期:  2020-03-23
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日