留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同湍流强度下煤粉颗粒群着火及燃烧特性的光学诊断研究

祁胜 刘丝雨 辛世荣 何勇 刘颖祖 王智化

祁胜, 刘丝雨, 辛世荣, 等. 不同湍流强度下煤粉颗粒群着火及燃烧特性的光学诊断研究[J]. 实验流体力学, 2020, 34(3): 61-69. doi: 10.11729/syltlx20200033
引用本文: 祁胜, 刘丝雨, 辛世荣, 等. 不同湍流强度下煤粉颗粒群着火及燃烧特性的光学诊断研究[J]. 实验流体力学, 2020, 34(3): 61-69. doi: 10.11729/syltlx20200033
QI Sheng, LIU Siyu, XIN Shirong, et al. Experimental study on ignition and combustion of pulverized coal particles clouds under laminar and turbulent conditions[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 61-69. doi: 10.11729/syltlx20200033
Citation: QI Sheng, LIU Siyu, XIN Shirong, et al. Experimental study on ignition and combustion of pulverized coal particles clouds under laminar and turbulent conditions[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 61-69. doi: 10.11729/syltlx20200033

不同湍流强度下煤粉颗粒群着火及燃烧特性的光学诊断研究

doi: 10.11729/syltlx20200033
基金项目: 

国家自然科学基金 51876192

国家自然科学基金 51776185

国家自然科学基金 51621005

详细信息
    作者简介:

    祁胜(1994-), 男, 江苏盐城人, 博士研究生。研究方向:煤及生物质燃烧特性的光学诊断。通信地址:浙江省杭州市浙江大学热能工程研究所(310027)。E-mail:qisheng 0929@zju.edu.cn

    通讯作者:

    何勇,E-mail: heyong@zju.edu.cn

  • 中图分类号: TK16

Experimental study on ignition and combustion of pulverized coal particles clouds under laminar and turbulent conditions

  • 摘要: 利用Hencken型平面火焰燃烧器搭建携带流反应系统,研究了不同湍流强度下煤粉颗粒群的着火及燃烧特性。煤粉被一次风送入温度、氧含量(本文所称"氧含量"是指氧的摩尔分数,mole fraction)可调节的高温烟气中形成稳定的射流火焰,利用OH平面激光诱导荧光技术(OH-Planar Laser-Induced Fluorescence,OH-PLIF)观测煤粉射流火焰着火、群燃等阶段的瞬态结构,基于对火焰图像的处理探究煤粉颗粒群的着火及燃烧特性。OH-PLIF的测量结果表明,在煤粉射流火焰的上游,射流外围区域的煤粉首先发生脱挥发分并着火,外围已燃的煤粉释放出大量热量并不断向射流内部传递,促进了射流内部区域煤粉颗粒群挥发分的析出。在高速一次风的卷吸及扰动作用下,析出的挥发分与氧之间不断扩散、混合,燃烧的OH锋面逐渐向射流中心区域延伸并连接成片,出现挥发分群燃火焰。实验结果表明:层流状态下,煤粉射流火焰窄而明亮;随着一次风湍流强度的增强,射流中煤粉颗粒的扩散运动变得剧烈,火焰形态发生变化,着火距离显著缩短。本文定量地研究了不同湍流强度下背景烟气温度(1200~1700 K)、烟气氧含量(10%~30%)以及一次风氧含量(5%~45%)对煤粉颗粒群着火延迟的影响规律。随着背景烟气温度、送风氧含量的升高,着火延迟时间逐渐缩短,但存在阈值现象,一旦背景烟气温度或送风氧含量超出某一阈值,其对煤粉颗粒群着火延迟的影响变弱,控制煤粉颗粒群着火行为的主导因素随之发生改变。
  • 图  1  实验系统示意图

    Figure  1.  Schematic of experimental system

    图  2  典型工况下燃烧器上方的轴向温度分布

    Figure  2.  The axial temperature distribution above the Hencken burner

    图  3  不同湍流强度下的煤粉射流火焰图像

    Figure  3.  Flame images under various turbulence conditions

    图  4  湍流射流火焰的OH瞬态分布图和数码相机拍摄的火焰图像

    Figure  4.  Transient distribution of OH in the turbulent coal jet flames and typical image of flames captured by digital camera

    图  5  不同烟气温度下的射流火焰图像

    Figure  5.  Flame images for various surrounding temperatures

    图  6  煤粉颗粒群着火距离及延迟时间随背景烟气温度的变化

    Figure  6.  The ignition distance and delay time of pulverized coal particles clouds for various surrounding temperatures

    图  7  不同一次风氧含量下的射流火焰图像

    Figure  7.  Flame images for various mole fractions of primary O2

    图  8  不同一次风氧含量下射流火焰内部的OH瞬态分布图

    Figure  8.  Transient distribution of OH in the flames for various mole fractions of primary O2

    图  9  煤粉颗粒群着火距离及延迟时间随一次风氧含量的变化

    Figure  9.  The ignition distance and delay time of pulverized coal particles clouds for various mole fractions of primary O2

    图  10  背景烟气不同氧含量工况下的射流火焰图像

    Figure  10.  Flame images for various mole fractions of surrounding O2

    图  11  煤粉颗粒群着火距离及延迟时间随背景烟气氧含量的变化

    Figure  11.  The ignition distance and delay time of pulverized coal particles clouds for various mole fractions of surrounding O2

    表  1  煤种的工业分析和元素分析数据

    Table  1.   Proximate and ultimate analysis of coal sample

    Items Values
    Proximate analysis
    (wt %, dry basis)
    Volatile 33.39
    Ash 11.95
    Fixed carbon 54.66
    Ultimate analysis
    (wt %, dry ash free basis)
    Carbon 81.75
    Hydrogen 4.31
    Nitrogen 0.92
    Sulfur 0.49
    Oxygen 12.53
    下载: 导出CSV
  • [1] 国家统计局.中华人民共和国2019年国民经济和社会发展统计公报[R]. 2020.

    National Bureau of Statistics. Statistical communique of the people's republic of China on the 2019 national economic and social development[R]. 2020.
    [2] LEVENDIS Y A, JOSHI K, KHATAMI R, et al. Combustion behavior in air of single particles from three different coal ranks and from sugarcane bagasse[J]. Combustion and Flame, 2011, 158(3):452-465. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c06523b0f86732423ce89f8e1a85fc6
    [3] KHATAMI R, STIVERS C, LEVENDIS Y A. Ignition characteristics of single coal particles from three different ranks in O2/N2 and O2/CO2 atmospheres[J]. Combustion and Flame, 2012, 159(12):3554-3568. doi: 10.1016/j.combustflame.2012.06.019
    [4] KHATAMI R, LEVENDIS Y A. An overview of coal rank influence on ignition and combustion phenomena at the particle level[J]. Combustion and Flame, 2016, 164:22-34. doi: 10.1016/j.combustflame.2015.10.031
    [5] LIU Y H, GEIER M, MOLINA A, et al. Pulverized coal stream ignition delay under conventional and oxy-fuel combustion conditions[J]. International Journal of Greenhouse Gas Control, 2011, 5(s1):36-46. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0223662666/
    [6] TANIGUCHI M, OKAZAKI H, KOBAYASHI H, et al. Pyrolysis and ignition characteristics of pulverized coal particles[J]. Journal of Energy Resources Technology, 2001, 123(1):32-38. doi: 10.1115/1.1347989
    [7] MOLINA A, SHADDIX C R. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion[J]. Proceedings of the Combustion Institute, 2007, 31(2):1905-1912. doi: 10.1016/j.proci.2006.08.102
    [8] SHADDIX C R, MOLINA A. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion[J]. Proceedings of the Combustion Institute, 2009, 32(2):2091-2098. doi: 10.1016/j.proci.2008.06.157
    [9] SUDA T, MASUKO K, SATO J, et al. Effect of carbon dioxide on flame propagation of pulverized coal clouds in CO2/O2 combustion[J]. Fuel, 2007, 86(12-13):2008-2015. doi: 10.1016/j.fuel.2006.11.038
    [10] YUAN Y, LI S Q, LI G D, et al. The transition of heterogeneous-homogeneous ignitions of dispersed coal particle streams[J]. Combustion and Flame, 2014, 161(9):2458-2468. doi: 10.1016/j.combustflame.2014.03.008
    [11] BALUSAMY S, KAMAL M M, LOWE S M, et al. Laser diagnostics of pulverized coal combustion in O2/N2 and O2/CO2 conditions:velocity and scalar field measurements[J]. Experiments in Fluids, 2015, 56(5):108. doi: 10.1007/s00348-015-1965-z
    [12] BALUSAMY S, SCHMIDT A, HOCHGREB S. Flow field measurements of pulverized coal combustion using optical diagnostic techniques[J]. Experiments in Fluids, 2013, 54(5):1534. doi: 10.1007/s00348-013-1534-2
    [13] HAYASHI J, HASHIMOTO N, NAKATSUKA N, et al. Soot formation characteristics in a lab-scale turbulent pulverized coal flame with simultaneous planar measurements of laser induced incandescence of soot and Mie scattering of pulverized coal[J]. Proceedings of the Combustion Institute, 2013, 34(2):2435-2443. doi: 10.1016/j.proci.2012.10.002
    [14] HAYASHI J, HASHIMOTO N, NAKATSUKA N, et al. Simultaneous imaging of Mie scattering, PAHs laser induced fluorescence and soot laser induced incandescence to a lab-scale turbulent jet pulverized coal flame[J]. Proceedings of the Combustion Institute, 2019, 37(3):3045-3052. doi: 10.1016/j.proci.2018.09.028
    [15] HWANG S M, KUROSE R, AKAMATSU F, et al. Application of optical diagnostics techniques to a laboratory-scale turbulent pulverized coal flame[J]. Energy & Fuels, 2005, 19(2):382-392. doi: 10.1021/ef049867z
    [16] SUNG Y, LEE S, EOM S, et al. Optical non-intrusive measurements of internal recirculation zone of pulverized coal swirling flames with secondary swirl intensity[J]. Energy, 2016, 103:61-74. doi: 10.1016/j.energy.2015.12.095
    [17] SUNG Y M, MOON C E, KIM J R, et al. Influence of pulverized coal properties on heat release region in turbulent jet pulverized coal flames[J]. Experimental Thermal and Fluid Science, 2011, 35(4):694-699. doi: 10.1016/j.expthermflusci.2011.01.003
    [18] XU K L, WU Y X, WANG Z N, et al. Experimental study on ignition behavior of pulverized coal particle clouds in a turbulent jet[J]. Fuel, 2016, 167:218-225. doi: 10.1016/j.fuel.2015.11.027
    [19] 许开龙, 俞伟伟, 吴玉新, 等.一次风速度对煤颗粒群着火特性影响的实验研究[J].燃烧科学与技术, 2014, 20(4):313-318. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201404006

    XU K L, YU W W, WU Y X, et al. Experimental study on effects of primary flow velocity on ignition of coal particles[J]. Journal of Combustion Science and Technology, 2014, 20(4):313-318. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201404006
    [20] 许开龙, 俞伟伟, 吴玉新, 等.一次风氧浓度对煤颗粒群着火特性影响的实验研究[J].工程热物理学报, 2013, 34(10):1964-1968. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201310040

    XU K L, YU W W, WU Y X, et al. Effects of primary flow oxygen concentration on ignition of group coal particles[J]. Journal of Engineering Thermophysics, 2013, 34(10):1964-1968. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201310040
    [21] 俞伟伟, 吴玉新, 许开龙, 等.湍流条件下煤粉颗粒群着火特性实验研究[J].工程热物理学报, 2016, 37(2):443-447. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201602045

    YU W W, WU Y X, XU K L, et al. Experimental investigation on characteristics of coal particle stream ignition under turbulent condition[J]. Journal of Engineering Thermophysics, 2016, 37(2):443-447. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201602045
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  188
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-09
  • 修回日期:  2020-04-01
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日