留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鱼游动涡结构PIV实验研究

王福君 王洪平 高琪 魏润杰 刘彦鹏

王福君, 王洪平, 高琪, 等. 鱼游动涡结构PIV实验研究[J]. 实验流体力学, 2020, 34(5): 20-28. doi: 10.11729/syltlx20200039
引用本文: 王福君, 王洪平, 高琪, 等. 鱼游动涡结构PIV实验研究[J]. 实验流体力学, 2020, 34(5): 20-28. doi: 10.11729/syltlx20200039
WANG Fujun, WANG Hongping, GAO Qi, et al. PIV experimental study on fish swimming vortex structure[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 20-28. doi: 10.11729/syltlx20200039
Citation: WANG Fujun, WANG Hongping, GAO Qi, et al. PIV experimental study on fish swimming vortex structure[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 20-28. doi: 10.11729/syltlx20200039

鱼游动涡结构PIV实验研究

doi: 10.11729/syltlx20200039
基金项目: 

中央高校基本科研业务费专项资金 2019QNA4056

国家自然科学基金 11702302

详细信息
    作者简介:

    王福君(1995-), 男, 江西上饶人, 硕士研究生。研究方向:仿生实验流体力学。通信地址:浙江省杭州市西湖区浙江大学玉泉校区航空航天学院(310027)。E-mail:21824067@zju.edu.cn

    通讯作者:

    王洪平   E-mail: hpwang@imech.ac.cn

  • 中图分类号: O352

PIV experimental study on fish swimming vortex structure

  • 摘要: 鱼类逃逸和巡游已逐渐成为鱼类仿生推进水动力学领域的研究热点,其研究结果为水下航行器推进技术提供了很好的理论基础和指导意义。利用平面PIV技术测量了斑马鱼在水中游动时的尾迹流场,分析了不同游动状态下的鱼尾迹涡结构的变化规律;同时利用Tomo-PIV技术测量了曼龙鱼游尾迹三维流场,获得了涡环链结构。结果表明:不同游动状态下,鱼游尾迹表现出不同的流动结构和尾迹模式,对其进行研究有利于进一步揭示鱼游动的水动力学机理。
  • 图  1  游动模式的演变图[2]

    Figure  1.  Evolution of swimming patterns[2]

    图  2  平面PIV实验示意图

    Figure  2.  Experimental setup for planar PIV

    图  3  二维形态图

    Figure  3.  2D morphological image

    图  4  Tomo-PIV实验示意图

    Figure  4.  Experimental setup for Tomo-PIV

    图  5  三维重构实验数据与重构结果图

    Figure  5.  3D reconstruction experiment data and reconstruction result image

    图  6  涡脱落模式图

    Figure  6.  Vortex shedding patterns

    图  7  启动状态涡量场云图

    Figure  7.  Contour map of vortex field in starting state

    图  8  启动状态速度变化图

    Figure  8.  Start-up speed change chart

    图  9  巡游状态涡量场云图

    Figure  9.  Contour map of vortex field in cruise state

    图  10  巡游状态速度变化图

    Figure  10.  Cruise state speed change chart

    图  11  巡游-C型逃逸过渡状态涡量场云图

    Figure  11.  Cruise-C escape transition state vortex field contour

    图  12  巡游-C型逃逸过渡状态角度变化图

    Figure  12.  Cruise-C escape transition state angle change chart

    图  13  C型逃逸状态涡量场云图

    Figure  13.  Contour map of vortex field in type C escape state

    图  14  C型逃逸状态角度变化图

    Figure  14.  C escape state angle change chart

    图  15  曼龙鱼巡游状态三维尾流场结构

    Figure  15.  The 3D wake field structure of manarowana cruise state

  • [1] SMITS A J. Undulatory and oscillatory swimming[J]. Journal of Fluid Mechanics, 2019, 874:P1. doi: 10.1017/jfm.2019.284
    [2] SFAKIOTAKIS M, LANE D M, DAVIES J B C. Review of fish swimming modes for aquatic locomotion[J]. IEEE Journal of Oceanic Engineering, 1999, 24(2):237-252. doi: 10.1109/48.757275
    [3] 张军, 白亚强, 翟树成, 等.长鳍波动推进流向涡结构PIV试验研究[J].实验流体力学, 2017, 31(6):15-21. http://www.syltlx.com/CN/abstract/abstract11061.shtml

    ZHANG J, BAI Y Q, ZHAI S C, et al. PIV measurement on streamwise vortex generated by undulating fins[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6):15-21. http://www.syltlx.com/CN/abstract/abstract11061.shtml
    [4] BORAZJANI I, SOTIROPOULOS F. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes[J]. Journal of Experimental Biology, 2008, 211(10):1541-1558. doi: 10.1242/jeb.015644
    [5] BORAZJANI I, SOTIROPOULOS F. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes[J]. Journal of Experimental Biology, 2009, 212(4):576-592. doi: 10.1242/jeb.025007
    [6] 李龙, 尹协振.鲹科类鱼尾模型的巡游推进特性实验研究[J].实验流体力学, 2008, 22(1):1-5, 16. http://www.syltlx.com/CN/abstract/abstract9617.shtml

    LI L, YIN X Z. Experiments on propulsive characteristics of the caudal-fin models of carangiform fish in cruise[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1):1-5, 16. http://www.syltlx.com/CN/abstract/abstract9617.shtml
    [7] LAUDER G V, MADDEN P G A. Advances in comparative physiology from high-speed imaging of animal and fluid motion[J]. Annual Review of Physiology, 2008, 70:143-163. doi: 10.1146/annurev.physiol.70.113006.100438
    [8] MWAFFO V, ZHANG P, ROMERO CRUZ S, et al. Zebrafish swimming in the flow:a particle image velocimetry study[J]. PeerJ, 2017, 5:e4041. doi: 10.7717/peerj.4041
    [9] MCHENRY M J, LAUDER G V. The mechanical scaling of coasting in zebrafish (Danio rerio)[J]. Journal of Experimental Biology, 2005, 208(12):2289-2301. doi: 10.1242/jeb.01642
    [10] ZHOU K, LIU J K, CHEN W S. Numerical study on hydrodynamic performance of bionic caudal fin[J]. Applied Sciences, 2016, 6(1):15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=applsci-06-00015
    [11] 申功炘, 张永刚, 谭广琨, 等.鱼尾正弦摆动的流动特性研究[J].流体力学实验与测量, 2004, 18(3):6-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ltlxsyycl200403002

    SHEN G X, ZHANG Y G, TAN G K, et al. The characteristics study of the sine swing of the fish tail[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(3):6-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ltlxsyycl200403002
    [12] 于凯, 黄胜, 王超.一种新型的仿生双尾推进器模型实验[J].实验流体力学, 2008, 22(1):27-30. http://www.syltlx.com/CN/abstract/abstract9612.shtml

    YU K, HUANG S, WANG C. The model experiment of a new-type double tail-fin robotic fish propulsion[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1):27-30. http://www.syltlx.com/CN/abstract/abstract9612.shtml
    [13] WITT W C, WEN L, LAUDER G V. Hydrodynamics of C-start escape responses of fish as studied with simple physical models[J]. Integrative and Comparative Biology, 2015, 55(4):728-739. doi: 10.1093/icb/icv016
    [14] TYTELL E D, LAUDER G V. Hydrodynamics of the escape response in bluegill sunfish, Lepomis macrochirus[J]. The Journal of Experimental Biology, 2008, 211(Pt 21):3359-3369. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2f2310ac157cdbffea9897b212cac7a3
    [15] DANOS N, LAUDER G V. Challenging zebrafish escape responses by increasing water viscosity[J]. The Journal of Experimental Biology, 2012, 215(Pt 11):1854-1862. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84145f8916956eb4688869e3c54f4f76
    [16] DANOS N, LAUDER G V. The ontogeny of fin function during routine turns in zebrafish Danio rerio[J]. The Journal of Experimental Biology, 2007, 210(Pt 19):3374-3386. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d022e091e1c486565b8d435e3665dbf4
    [17] WANG Z W, YU Y L. Energetics comparison between zebrafish C-shaped turning and escape:self-propelled simulation with novel curvature models[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(4):467-480. http://en.cnki.com.cn/Article_en/CJFDTotal-ZKYB201904003.htm
    [18] 王建华, 韩红艳, 王春平, 等. CCD双目立体视觉测量系统的理论研究[J].电光与控制, 2007, 14(4):94-96, 116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dgykz200704024

    WANG J H, HAN H Y, WANG C P, et al. Theoretic research on double- CCD stereoscopic measurement system[J]. Electronics Optics & Control, 2007, 14(4):94-96, 116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dgykz200704024
    [19] WILLIAMSON C H K, ROSHKO A. Vortex formation in the wake of an oscillating cylinder[J]. Journal of Fluids and Structures, 1988, 2(4):355-381. doi: 10.1016/S0889-9746(88)90058-8
    [20] HU Y, PAN C, WANG J J, et al. Vortex structures for flow over an oscillating cylinder with a flexible tail[J]. Experiments in Fluids, 2014, 55:1682. doi: 10.1007/s00348-014-1682-z
    [21] HE X, GUO Q F, WANG J J. Extended flexible trailing-edge on the flow structures of an airfoil at high angle of attack[J]. Experiments in Fluids, 2019, 60(8):122. doi: 10.1007/s00348-019-2767-5
    [22] FLAMMANG B E, LAUDER G V, TROOLIN D R, et al. Volumetric imaging of fish locomotion[J]. Biology Letters, 2011, 7(5):695-698. doi: 10.1098/rsbl.2011.0282
    [23] SAKAKIBARA J, NAKAGAWA M, YOSHIDA M. Stereo-PIV study of flow around a maneuvering fish[J]. Experiments in Fluids, 2004, 36(2):282-293. doi: 10.1007/s00348-003-0720-z
    [24] TING S, YANG J T. Extracting energetically dominant flow features in a complicated fish wake using singular-value decomposition[J]. Physics of Fluids, 2009, 21(4):041901. doi: 10.1063/1.3122802
  • 加载中
图(15)
计量
  • 文章访问数:  605
  • HTML全文浏览量:  290
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-27
  • 修回日期:  2020-05-22
  • 刊出日期:  2020-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日