留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超燃冲压发动机模态转换及推力突变实验研究

连欢 顾洪斌 周芮旭 李拓 李忠朋

连欢, 顾洪斌, 周芮旭, 等. 超燃冲压发动机模态转换及推力突变实验研究[J]. 实验流体力学, 2021, 35(1): 97-108. doi: 10.11729/syltlx20200069
引用本文: 连欢, 顾洪斌, 周芮旭, 等. 超燃冲压发动机模态转换及推力突变实验研究[J]. 实验流体力学, 2021, 35(1): 97-108. doi: 10.11729/syltlx20200069
LIAN Huan, GU Hongbin, ZHOU Ruixu, et al. Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 97-108. doi: 10.11729/syltlx20200069
Citation: LIAN Huan, GU Hongbin, ZHOU Ruixu, et al. Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 97-108. doi: 10.11729/syltlx20200069

超燃冲压发动机模态转换及推力突变实验研究

doi: 10.11729/syltlx20200069
基金项目: 

国家自然科学基金 11872366

国家自然科学基金 91941104

中国科学院前沿科学重点研究项目 QYZDJ-SSW-JSC022

详细信息
    作者简介:

    连欢(1988-), 女, 浙江绍兴人, 研究员。研究方向: 湍流燃烧。通信地址: 北京市海淀区北四环西路15号中国科学院力学研究所(100190)。E-mail: hlian@imech.ac.cn

    通讯作者:

    顾洪斌, E-mail: guhb@imech.ac.cn

  • 中图分类号: V433.9

Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments

  • 摘要: 针对双模态冲压发动机燃烧室模型开展了来流连续变化飞行马赫数5.0~6.0加速上行和6.0~5.0减速下行的地面直连试验研究。首先基于直连台架推力及时间离散质量加权沿程马赫数一维计算,观察到了加速上行过程中来流变化导致的亚燃-超燃工作模态转变及推力突变现象;通过高速纹影流动显示技术及流动特征提取,提炼了来流变化导致模态转换及推力突变过程中瞬态流动特征的发展规律;最后通过超声速核心流激波强度理论以及压比时空图对动态飞行轨迹模态转换及推力突变机制进行了讨论,研究结果表明:释热总量与内流道匹配是模态转换及推力变化过程的根本,主导流动特征是隔离段预燃激波强度演变特性,然而燃料横向射流气动节流以及释热反压在隔离段预燃激波削弱耗散之后,仍然可对来流进行减速并维持推力。同时,动态飞行轨迹气动热及燃烧热积分效应可改变热流边界层特性以及发动机内流道抗反压能力,造成亚燃与超燃工作边界变化。
  • 图  1  双模态模型燃烧室

    Figure  1.  Dual-mode model combustor

    图  2  试验工况

    Figure  2.  Experimental conditions

    图  3  可调加热器总压

    Figure  3.  Total pressure of the transient operation heater

    图  4  推力传感器测量数据

    Figure  4.  Thrust measurement during simulated acceleration and deceleration

    图  5  质量加权马赫数

    Figure  5.  Mass weighted average Ma during simulated acceleration and deceleration

    图  6  (a) ABC加速上行轨迹纹影; (b) ABC加速上行轨迹CH*自发光

    Figure  6.  (a) Schlieren imaging during acceleration ABC; (b) CH* chemiluminescence during acceleration ABC

    图  7  (a) ADC加速上行轨迹纹影; (b) ADC加速上行轨迹CH*自发光

    Figure  7.  (a) Schlieren imaging during acceleration ADC; (b) CH* chemiluminescence during acceleration ADC

    图  8  ABC工况燃烧模式

    Figure  8.  Combustion regime of case A, B and C

    图  9  动态飞行路径超声速核心流截面与预燃激波强度分析

    Figure  9.  Impulse function analysis during simulated acceleration and deceleration

    图  10  (a) ABC沿程压比; (b) ADC沿程压比

    Figure  10.  (a) Pressure ratio during acceleration ABC; (b) Pressure ratio during acceleration ADC

    图  11  (a) ABCADC路径截面压比p2/pref; (b) ABCADC路径截面压比p3/pref

    Figure  11.  (a) p2/pref cutoff with route ABC and ADC; (b) p3/pref cutoff with route ABC and ADC

    图  12  热流边界层影响工作边界示意图

    Figure  12.  Illustration of mode transition shift due to boundary layer disturbance

    表  1  试验工况

    Table  1.   Experimental parameters

    实验工况 模拟飞行马赫数 模拟飞行高度/km 模拟动压/kPa 模拟总压/kPa 模拟总温/K 实验时间/s 加热气体总流量/(g·s-1) 煤油流量/(g·s-1)
    A 5.0 20.99 82 1548 1249 5 1878 28
    B 5.6 23.93 64 1678 1475 5 1283 28
    C 6.0 26.28 50 1939 1648 5 1178 28
    ABC 5.0~5.6~6.0 20.99~23.93~26.28 82~64~50 1548~1678~1939 1249~1475~1648 10 1878~1283~1178 28
    ADC 5.0~6.0 20.99~26.28 82~50 1548~1939 1249~1648 10 1878~1178 28
    CBA 6.0~5.6~5.0 26.28~23.93~20.99 50~64~82 1939~1678~1548 1648~1475~1249 10 1178~1283~1878 28
    CDA 6.0~5.0 26.28~20.99 50~82 1939~1548 1648~1249 10 1178~1878 28
    下载: 导出CSV
  • [1] BUILDER C H. On the thermodynamic spectrum of airbreath-ing propulsion[R]. AIAA 1964-243, 1964. doi: 10.2514/6.1964-243
    [2] HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Washington, DC: AIAA, Inc., 1994. doi: 10.2514/4.470356
    [3] MERCIER R, RONALD T. Hypersonic technology (HyTech) program overview[R]. AIAA 1998-1566, 1998. doi: 10.2514/6.1998-1566
    [4] 乐嘉陵, 胡欲立, 刘陵. 双模态超燃冲压发动机研究进展[J]. 流体力学实验与测量, 2000, 14(1): 1-12. doi: 10.3969/j.issn.1672-9897.2000.01.001

    LE J L, HU Y L, LIU L. Investigation of possibilities in developing dual-mode scramjets[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(1): 1-12. doi: 10.3969/j.issn.1672-9897.2000.01.001
    [5] 刘陵, 刘敬华, 张榛, 等. 超声速燃烧与超声速燃烧冲压发动机[M]. 西安: 西北工业大学出版社, 1993.
    [6] 冯志高, 关成启, 张红文. 高超声速飞行器概论[M]. 北京: 北京理工大学出版社, 2016.

    FENG Z G, GUAN C Q, ZHANG H W. An introduction to hypersonic aircraft[M]. Beijing: Beijing institute of technology press, 2016.
    [7] SULLINS G A. Demonstration of mode transition in a scramjet combustor[J]. Journal of Propulsion and Power, 1993, 9(4): 515-520. doi: 10.2514/3.23653
    [8] PRATT D, HEISER W. Isolator-combustor interaction in a dual-mode scramjet engine[R]. AIAA 1993-358, 1993. doi: 10.2514/6.1993-358
    [9] 张鹏, 俞刚. 超燃燃烧室一维流场分析模型的研究[J]. 流体力学实验与测量, 2003, 17(1): 88-92. doi: 10.3969/j.issn.1672-9897.2003.01.022

    ZHANG P, YU G. The study of one-dimensional flow analysis model of the combustor in supersonic combustion experiments[J]. Experiments and Measurements in Fluid Mechanics, 2003, 17(1): 88-92. doi: 10.3969/j.issn.1672-9897.2003.01.022
    [10] 郑小梅, 徐大军, 蔡国飙. 超燃冲压发动机性能的初步分析[J]. 航空学报, 2007, 28(S1): 35-41. doi: 10.3321/j.issn:1000-6893.2007.z1.007

    ZHENG X M, XU D J, CAI G B. A preliminary study on hypersonic airbreathing engine performance[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(S1): 35-41. doi: 10.3321/j.issn:1000-6893.2007.z1.007
    [11] 余勇, 刘卫东, 王振国. 超声速燃烧室性能一维数值模拟[J]. 流体力学实验与测量, 2004, 18(3): 36-41. doi: 10.3969/j.issn.1672-9897.2004.03.008

    YU Y, LIU W D, WANG Z G. A one-dimensional numerical analysis of supersonic combustor performance[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(3): 36-41. doi: 10.3969/j.issn.1672-9897.2004.03.008
    [12] 陈军. Ma4~7双模态冲压发动机燃烧室热力工作过程与性能潜力研究[D]. 四川绵阳: 中国空气动力研究与发展中心, 2016.

    CHEN J. The relationship between thermal process and potential performance in dual-mode scramjet at Ma4~7[D]. Mianyang, Sichuan: China Aerodynamics Research and Development Center, 2016.
    [13] 陈强, 陈立红, 顾洪斌, 等. 释热分布对超燃冲压发动机性能的影响及优化[J]. 推进技术, 2009, 30(2): 135-138. doi: 10.3321/j.issn:1001-4055.2009.02.002

    CHEN Q, CHEN L H, GU H B, et al. Investigation of the effect and optimization of heat release distributions in the combustor on scramjet performance[J]. Journal of Propulsion Technology, 2009, 30(2): 135-138. doi: 10.3321/j.issn:1001-4055.2009.02.002
    [14] MATSUO K, MIYAZATO Y, KIM H D. Shock train and pseudo-shock phenomena in internal gas flows[J]. Progress in Aerospace Sciences, 1999, 35(1): 33-100. doi: 10.1016/S0376-0421(98)00011-6
    [15] WALTRUP P J, BILLIG F S. Structure of shock waves in cylindrical ducts[J]. AIAA Journal, 1973, 11(10): 1404-1408. doi: 10.2514/3.50600
    [16] CARROLL B F, DUTTON J C. Characteristics of multiple shock wave/turbulent boundary-layer interactions in rectangular ducts[J]. Journal of Propulsion and Power, 1990, 6(2): 186-193. doi: 10.2514/3.23243
    [17] CARROLL B F, DUTTON J C. Turbulence phenomena in a multiple normal shock wave/turbulent boundary-layer interaction[J]. AIAA Journal, 1992, 30(1): 43-48. doi: 10.2514/3.10880
    [18] CARROLL B F, LOPEZ-FERNANDEZ P A, DUTTON J C. Computations and experiments for a multiple normal shock/boundary-layer interaction[J]. Journal of Propulsion and Power, 1993, 9(3): 405-411. doi: 10.2514/3.23636
    [19] SMART M. Scramjet isolators[R]. RTO-EN-AVT-185, 2010.
    [20] WIETING A R. Exploratory study of transient upstart phenomena in a three-dimensional fixed-geometry scramjet engine[R]. NASA-TN-D-8156, 1976. https://ntrs.nasa.gov/citations/19760013056
    [21] RODI P E, EMAMI S, TREXLER C A. Unsteady pressure behavior in a ramjet/scramjet inlet[J]. Journal of Propulsion and Power, 1996, 12(3): 486-493. doi: 10.2514/3.24061
    [22] DO H, IM S K, MUNGAL M G, et al. The influence of boundary layers on supersonic inlet flow unstart induced by mass injection[J]. Experiments in Fluids, 2011, 51(3): 679-691. doi: 10.1007/s00348-011-1077-3
    [23] 田野, 杨顺华, 邓维鑫, 等. 超燃冲压发动机燃烧室空气节流技术研究[J]. 推进技术, 2014, 35(4): 499-506. doi: 10.13675/j.cnki.tjjs.2014.03.014

    TIAN Y, YANG S H, DENG W X, et al. A study on air throttling technology in scramjet combustor[J]. Journal of Propulsion Technology, 2014, 35(4): 499-506. doi: 10.13675/j.cnki.tjjs.2014.03.014
    [24] MITANI T, CHINZEI N, KANDA T. Reaction and mixing-controlled combustion in scramjet engines[J]. Journal of Propulsion and Power, 2001, 17(2): 308-314. doi: 10.2514/2.5743
    [25] CHUN J, SCHEUERMANN T, VON WOLFERSDORF J, et al. Experimental study on combustion mode transition in a scramjet with parallel injection[R]. AIAA 2006-8063, 2006. doi: 10.2514/6.2006-8063
    [26] TAKAHASHI S, DEMISE S, OSHITA M, et al. Correlation between heat flux distribution and combustion mode in a scramjet combustor[J]. Physics Letters B, 2001, 663(s1-2): 107-110. http://www.irgrid.ac.cn/handle/1471x/699393
    [27] LE D B, GOYNE C P, KRAUSS R H, et al. Experimental study of a dual-mode scramjet isolator[J]. Journal of Propulsion and Power, 2008, 24(5): 1050-1057. doi: 10.2514/1.32591
    [28] ZHANG C L, CHANG J T, MA J X, et al. Effect of Mach number and equivalence ratio on the pressure rising variation during combustion mode transition in a dual-mode combustor[J]. Aerospace Science and Technology, 2018, 72: 516-524. doi:10.1016/j.ast.2017. 11.042
    [29] 肖保国, 李莉, 张顺平, 等. 超燃冲压发动机燃烧模态转换直连式实验研究[J]. 推进技术, 2019, 40(2): 339-346. doi: 10.13675/j.cnki.tjjs.170760

    XIAO B G, LI L, ZHANG S P, et al. Direct-connect experimental investigation of combustion mode transition for scramjet engine[J]. Journal of Propulsion Technology, 2019, 40(2): 339-346. doi: 10.13675/j.cnki.tjjs.170760
    [30] FOTIA M L. Mechanics of combustion mode transition in a direct-connect ramjet-scramjet experiment[J]. Journal of Propulsion and Power, 2014, 31(1): 69-78. doi: 10.2514/1.B35171
    [31] ZHANG C L, CHANG J T, FENG S, et al. Pressure rising slope variation accompanying with combustion mode transition in a dual-mode combustor[J]. Aerospace Science and Technology, 2017, 68: 370-379. doi: 10.1016/j.ast.2017.05.034
    [32] ZHANG C, YANG Q C, CHANG J T, et al. Nonlinear characteristics and detection of combustion modes for a hydrocarbon fueled scramjet[J]. Acta Astronautica, 2015, 110: 89-98. doi: 10.1016/j.actaastro.2014.11.023
    [33] CAO R F, CHANG J T, BAO W, et al. Analysis of combustion mode and operating route for hydrogen fueled scramjet engine[J]. International Journal of Hydrogen Energy, 2013, 38(14): 5928-5935. doi: 10.1016/j.ijhydene.2013.02.135
    [34] BAO W, YANG Q C, CHANG J T, et al. Dynamic characteristics of combustion mode transitions in a strut-based scramjet combustor model[J]. Journal of Propulsion and Power, 2013, 29(5): 1244-1248. doi: 10.2514/1.B34921
    [35] ZHANG C L, CHANG J T, ZHANG Y S, et al. Flow field characteristics analysis and combustion modes classification for a strut/cavity dual-mode combustor[J]. Acta Astronautica, 2017, 137: 44-51. doi: 10.1016/j.actaastro.2017.03.023
    [36] YANG Q C, HU J C, CHANG J T, et al. Experimental study on combustion mode transition effects in a strut-based scramjet combustor[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(4): 764-771. doi: 10.1177/0954410014539288
    [37] CAO R F, CHANG J T, TANG J F, et al. Study on combustion mode transition of hydrogen fueled dual-mode scramjet engine based on thermodynamic cycle analysis[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21251-21258. doi: 10.1016/j.ijhydene.2014.10.082
    [38] YANG Q C, CHANG J T, BAO W, et al. A mechanism of combustion mode transition for hydrogen fueled scramjet[J]. International Journal of Hydrogen Energy, 2014, 39(18): 9791-9797. doi: 10.1016/j.ijhydene.2014.04.090
    [39] FOTIA M L, DRISCOLL J F. Isolator-combustor interactions in a direct-connect ramjet-scramjet experiment[J]. Journal of Propulsion and Power, 2012, 28(1): 83-95. doi: 10.2514/1.B34367
    [40] FOTIA M L, DRISCOLL J F. Ram-scram transition and flame/shock-train interactions in a model scramjet experiment[J]. Journal of Propulsion and Power, 2012, 29(1): 261-273. doi: 10.2514/1.B34486
    [41] 浮强, 宋文艳, 石德永, 等. 来流总温对双模态燃烧室模态转换边界的影响[J]. 航空动力学报, 2019, 34(5): 1119-1126. doi: 10.13224/j.cnki.jasp.2019.05.018

    FU Q, SONG W Y, SHI D Y, et al. Effects of incoming flow total temperature on mode transition boundary in dual mode scramjet combustor[J]. Journal of Aerospace Power, 2019, 34(5): 1119-1126. doi: 10.13224/j.cnki.jasp.2019.05.018
    [42] MASUMOTO R, TOMIOKA S, KUDO K, et al. Experi-mental study on combustion modes in a supersonic combustor[J]. Journal of Propulsion and Power, 2011, 27(2): 346-355. doi: 10.2514/1.B34020
    [43] MENG Y, GU H B, ZHUANG J H, et al. Experimental study of mode transition characteristics of a cavity-based scramjet combustor during acceleration[J]. Aerospace Science and Technology, 2019, 93: 105316. doi: 10.1016/j.ast.2019.105316
    [44] 潘余, 李大鹏, 刘卫东, 等. 超燃冲压发动机燃烧模态转换试验研究[J]. 爆炸与冲击, 2008, 28(4): 293-297. doi: 10.3321/j.issn:1001-1455.2008.04.002

    PAN Y, LI D P, LIU W D, et al. Combustion mode transition in a scramjet engine[J]. Explosion and Shock Waves, 2008, 28(4): 293-297. doi:10. 3321/j.issn:1001-1455.2008.04.002
    [45] KANDA T, CHINZEI N, KUDO K, et al. Dual-mode operations in a scramjet combustor[J]. Journal of Propulsion and Power, 2004, 20(4): 760-763. doi: 10.2514/1.3683
    [46] KOBAYASHI K, TOMIOKA S, KATO K, et al. Performance of a dual-mode combustor with multistaged fuel injection[J]. Journal of Propulsion and Power, 2006, 22(3): 518-526. doi: 10.2514/1.19294
    [47] KOUCHI T, MASUYA G, MITANI T, et al. Mechanism and control of combustion-mode transition in a scramjet engine[J]. Journal of Propulsion and Power, 2012, 28(1): 106-112. doi: 10.2514/1.B34172
    [48] WANG Z G, SUN M B, WANG H B, et al. Mixing-related low frequency oscillation of combustion in an ethylene-fueled supersonic combustor[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2137-2144. doi: 10.1016/j.proci.2014.09.005
    [49] SUN M B, WANG Z G, LIANG J H, et al. Flame characteristics in supersonic combustor with hydrogen injection upstream of cavity flameholder[J]. Journal of Propulsion and Power, 2008, 24(4): 688-696. doi: 10.2514/1.34970
    [50] MICKA D J, DRISCOLL J F. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2397-2404. doi: 10.1016/j.proci.2008.06.192
    [51] WANG Z P, LI F, GU H B, et al. Experimental study on the effect of combustor configuration on the performance of dual-mode combustor[J]. Aerospace Science and Technology, 2015, 42: 169-175. doi: 10.1016/j.ast.2015.01.008
    [52] YUAN Y M, ZHANG T C, YAO W, et al. Characterization of flame stabilization modes in an ethylene-fueled supersonic combustor using time-resolved CH* chemiluminescence[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2919-2925. doi: 10.1016/j.proci.2016.07.040
    [53] NAKAYA S, KINOSHITA R, LEE J, et al. Analysis of supersonic combustion characteristics of ethylene/methane fuel mixture on high-speed measurements of CH* chemiluminescence[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3749-3756. doi: 10.1016/j.proci.2018.09.011
    [54] SHE Z S, ZOU H Y, XIAO M J, et al. Prediction of compressible turbulent boundary layer via a symmetry-based length model[J]. Journal of Fluid Mechanics, 2018, 857: 449-468. doi: 10.1017/jfm.2018.710
    [55] LI X, TONG F L, YU C P, et al. Statistical analysis of temperature distribution on vortex surfaces in hypersonic turbulent boundary layer[J]. Physics of Fluids, 2019, 31(10): 106101. doi: 10.1063/1.5115541
    [56] 周芮旭, 连欢, 顾洪斌, 等. 激光诱导荧光聚焦纹影系统及超声速燃烧流场应用[J]. 气体物理, 2020, 5(2): 14-19. doi: 10.19527/j.cnki.2096-1642.0799

    ZHOU R X, LIAN H, GU H B, et al. Laser-induced fluorescence focusing schlieren system and its application in scramjet combustor[J]. Physics of Gases, 2020, 5(2): 14-19. doi: 10.19527/j.cnki.2096-1642.0799
    [57] LIAN H, GU H B, YUE L J, et al. Characterization of combustion oscillations in a cavity flame holder during acceleration experiments[C]//Proc of the 1st International Conference on High-Speed Vehicle Science Technology.2018.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  287
  • HTML全文浏览量:  123
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-22
  • 修回日期:  2020-10-15
  • 刊出日期:  2021-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日