留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

探针支杆尾迹对压气机转子叶片振动特性的影响研究

向宏辉 高杰 杨荣菲 刘氦旭 吴森林

向宏辉, 高杰, 杨荣菲, 等. 探针支杆尾迹对压气机转子叶片振动特性的影响研究[J]. 实验流体力学, 2021, 35(2): 58-66. doi: 10.11729/syltlx20200070
引用本文: 向宏辉, 高杰, 杨荣菲, 等. 探针支杆尾迹对压气机转子叶片振动特性的影响研究[J]. 实验流体力学, 2021, 35(2): 58-66. doi: 10.11729/syltlx20200070
XIANG Honghui, GAO Jie, YANG Rongfei, et al. Effect of probe support wake on vibration characteristics of compressor rotor blade[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 58-66. doi: 10.11729/syltlx20200070
Citation: XIANG Honghui, GAO Jie, YANG Rongfei, et al. Effect of probe support wake on vibration characteristics of compressor rotor blade[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 58-66. doi: 10.11729/syltlx20200070

探针支杆尾迹对压气机转子叶片振动特性的影响研究

doi: 10.11729/syltlx20200070
基金项目: 

民用飞机专项科研项目 MJ-2016-J-96

翼型/叶栅空气动力学国防科技重点实验室基金 61422010501

详细信息
    作者简介:

    向宏辉(1979-), 男, 湖南沅陵人, 研究员, 博士。研究方向: 叶轮机性能评定与试验技术研究。通信地址: 四川省绵阳市游仙区航空路1号(621000)。E-mail: xianghonghui624@sina.com

    通讯作者:

    向宏辉, E-mail: xianghonghui624@sina.com

  • 中图分类号: V231.3

Effect of probe support wake on vibration characteristics of compressor rotor blade

  • 摘要: 针对某轴流压气机试验中出现的第一级转子叶片振动应变信号突增现象,开展了不同构型探针支杆尺寸对压气机转子叶片振动特性影响的对比试验。通过对比不同构型探针支杆尺寸、不同安装布局下转子叶片振动信号的变化,证实了进口探针支杆尺寸是诱发转子叶片异常振动的主要原因。同时采用流固耦合数值模拟方法,分析了探针支杆尾迹诱发转子叶片共振的流动机理。研究结果表明:支杆直径为10 mm的圆柱形探针诱发转子叶片发生整转速阶次激振的一阶共振,当探针支杆尺寸减小后,转子叶片振动响应水平显著降低。探针支杆诱发压气机转子叶片共振的扰动频率来源于支杆尾迹诱导频率与支杆通过频率的共同作用,支杆尾迹脱落涡会引起转子叶片进气攻角产生大幅值脉动。
  • 图  1  进口测量截面探针安装位置示意图

    Figure  1.  Schematic diagram of installed position of inlet measurement probes

    图  2  各型探针结构实物图

    Figure  2.  Picture of inlet measurement probes

    图  3  转子叶片表面应变片粘贴位置

    Figure  3.  Installed position of strain gauges on rotor blade surface

    图  4  振动应变测量系统原理图

    Figure  4.  Schematic diagram of the vibration strain measurement system

    图  5  五孔方向探针

    Figure  5.  The five-hole orientation probe

    图  6  转子叶片在安装圆柱形方向探针前后振动应变时域变化(4900 r/min)

    Figure  6.  Variation of the vibration strain time domain of rotor blade with and without cylindrical orientation probe (4900 r/min)

    图  7  安装不同类型方向探针后转子叶片振动应变时域变化(5150 r/min)

    Figure  7.  Variation of the vibration strain time domain of rotor blade with different types of probes (5150 r/min)

    图  8  转子叶片在安装圆柱形方向探针前后振动应变频域变化(4900 r/min)

    Figure  8.  Variation of the vibration strain frequency domain of rotor blade with and without cylindrical orientation probe (4900 r/min)

    图  9  安装不同类型探针后转子叶片振动应变频域变化(5150 r/min)

    Figure  9.  Variation of the vibration strain frequency domain of rotor blade with different type of probes (5150 r/min)

    图  10  带探针支杆的压气机计算模型

    Figure  10.  Computational model of compressor with probe support

    图  11  计算网格示意图

    Figure  11.  Schematic diagram of computational mesh

    图  12  探针支杆诱导三维流场结构

    Figure  12.  Three dimensional flowfield structure induced by probe support

    图  13  不同叶高截面探针支杆脱落涡静熵云图

    Figure  13.  Static entropy distributions of shedding vortex induced by probe support with different radial sections

    图  14  探针支杆尾缘监测点压力频谱结果

    Figure  14.  Variation of the fluctuating pressure frequency domain behind probe support trailing edge

    图  15  转子前缘攻角脉动图

    Figure  15.  Fluctuation of attack angle at rotor leading edge

    图  16  不同叶高截面转子压力系数沿流向变化

    Figure  16.  The pressure coefficient of rotors with different radial sections varies along flow direction

    表  1  转子叶片振动对比试验结果

    Table  1.   Experimental results of rotor blade vibration

    序号 总压探针 方向探针 附面层探针 运行转速/(r·min-1) 振动信号
    1 3 3 1 4457 突增
    2 2 1 0 5150 突增
    3 1 1 0 5150 突增
    4 0 0 0 7691 正常
    5 2 0 0 7691 正常
    6 2 1(L型) 0 7691 正常
    下载: 导出CSV
  • [1] JONES M J, BIRCH N T, BRADBROOK S J. Evolutions in aircraft engine design and a vision for the future[R]. ISABE-2002-1014, 2001.
    [2] BROICHHAUSEN K D, ZIEGLER K U. Supersonic and transonic compressors: past, status and technology trends[C]//Proceedings of ASME Turbo Expo 2005: Power for Land, Sea, and Air. 2008. doi: 10.1115/GT2005-69067
    [3] MILLER R J, MOSS R W, AINSWORTH R W, et al. Time-resolved vane-rotor interaction in a high-pressure turbine stage[J]. Journal of Turbomachinery, 2003, 125(1): 1-13. doi: 10.1115/1.1492823
    [4] 王英锋, 胡骏, 李传鹏, 等. 上游转子对下游静子叶片气动力的影响[J]. 航空学报, 2006, 27(4): 545-550. doi: 10.3321/j.issn:1000-6893.2006.04.001

    WANG Y F, HU J, LI C P, et al. Effects of up-stream rotor on the aerodynamic force on down-stream stator blades[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 545-550. doi: 10.3321/j.issn:1000-6893.2006.04.001
    [5] DUDZINSKI T J, KRAUSE L N. Effect of inlet geometry on flow-angle characteristics of miniature total-pressure tubes[R]. NASA TN D-6460, 1971.
    [6] COLDRICK S, IVEY P, WELLS R. Considerations for using 3D pneumatic probes in high speed axial compressors[C]//Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air. 2009. doi: 10.1115/GT2002-30045
    [7] LEPICOVSKY J. Effects of a rotating aerodynamic probe on the flow field of a compressor rotor[R]. NASA/CR-2008-215215, 2008.
    [8] MA H W, LI S H, WEI W. Effects of probe support on the flow field of a low-speed axial compressor[J]. Journal of Thermal Science, 2014, 23(2): 120-126. doi: 10.1007/s11630-014-0685-7
    [9] MA H W, LI S H, WEI W. Effects of probe support on the stall characteristics of a low-speed axial compressor[J]. Journal of Thermal Science, 2016, 25(1): 43-49. doi: 10.1007/s11630-016-0832-4
    [10] HE X, MA H W, REN M L, et al. Investigation of the effects of airfoil-probes on the aerodynamic performance of an axial compressor[J]. Chinese Journal of Aeronautics, 2012, 25(4): 517-523. doi: 10.1016/S1000-9361(11)60415-9
    [11] XIANG H H, GE N, HOU M J, et al. An experimental investigation of the effects of upstream probe disturbance on compressor cascade performance[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(7): 1248-1257. doi: 10.1177/0954410016652435
    [12] XIANG H H, GE N, GAO J, et al. Experimental investigation of the effect of the probe support tail structure on the compressor cascade flow field[J]. International Journal of Turbo & Jet-Engines, 2019, 36(1): 9-18. doi: 10.1515/tjj-2016-0071
    [13] WISLER D C. Core compressor exit stage study. Volume 3: Data and performance report for screening test configurations[R]. NASA CR-159499, 1980.
    [14] KENYON J A, RABE D C, FLEETER S. Aerodynamic effects on blade vibratory stress variations[J]. Journal of Propulsion and Power, 1999, 15(5): 675-680. doi: 10.2514/2.5492
    [15] 张明明, 侯安平, 贺小帆, 等. 进气畸变下压气机叶片强度分析[J]. 航空动力学报, 2011, 26(1): 108-114. doi: 10.13224/j.cnki.jasp.2011.01.015

    ZHANG M M, HOU A P, HE X F, et al. Intensity analysis of blades in axial compressor with inlet distortion[J]. Journal of Aerospace Power, 2011, 26(1): 108-114. doi: 10.13224/j.cnki.jasp.2011.01.015
    [16] SRINIVASAN A V. Flutter and resonant vibration characteristics of engine blades: an IGTI scholar paper[C]//Proceedings of ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. 2014. doi: 10.1115/97-GT-533
    [17] EKICI K, VOYTOVYCH D, HALL K. Time-linearized navier-stokes analysis of flutter in multistage turbomachines[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005. doi: 10.2514/6.2005-836
    [18] 张明明, 李绍斌, 侯安平, 等. 叶轮机械叶片颤振研究的进展与评述[J]. 力学进展, 2011, 41(1): 26-38. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201101004.htm

    ZHANG M M, LI S B, HOU A P, et al. A review of the research on blade flutter in turbomachinery[J]. Advances in Mechanics, 2011, 41(1): 26-38. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201101004.htm
    [19] DICKMANN H P, SECALL WIMMEL T, SZWEDOWICZ J, et al. Unsteady flow in a turbocharger centrifugal compressor: three-dimensional computational fluid dynamics simulation and numerical and experimental analysis of impeller blade vibration[J]. Journal of Turbomachinery, 2006, 128(3): 455-465. doi: 10.1115/1.2183317
    [20] 闫嘉超, 侯安平, 周盛. 非定常耦合流动对叶片动力响应的影响[J]. 航空动力学报, 2010, 25(3): 582-586. doi: 10.13224/j.cnki.jasp.2010.03.011

    YAN J C, HOU A P, ZHOU S. Effect of unsteady cooperative flow on the dynamic response in the rotor of axial compressor[J]. Journal of Aerospace Power, 2010, 25(3): 582-586. doi: 10.13224/j.cnki.jasp.2010.03.011
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  97
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 修回日期:  2020-06-28
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日