留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水滴变形及其对阻力特性影响的实验研究

郭龙 刘森云 王桥 赵献礼 易贤

郭龙, 刘森云, 王桥, 等. 水滴变形及其对阻力特性影响的实验研究[J]. 实验流体力学, 2020, 34(5): 44-49. doi: 10.11729/syltlx20200076
引用本文: 郭龙, 刘森云, 王桥, 等. 水滴变形及其对阻力特性影响的实验研究[J]. 实验流体力学, 2020, 34(5): 44-49. doi: 10.11729/syltlx20200076
GUO Long, LIU Senyun, WANG Qiao, et al. Experimental investigation of water droplet deformation and the effect on its drag characteristic[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 44-49. doi: 10.11729/syltlx20200076
Citation: GUO Long, LIU Senyun, WANG Qiao, et al. Experimental investigation of water droplet deformation and the effect on its drag characteristic[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 44-49. doi: 10.11729/syltlx20200076

水滴变形及其对阻力特性影响的实验研究

doi: 10.11729/syltlx20200076
基金项目: 

空气动力学国家重点实验室研究基金 SKL2019020401

详细信息
    作者简介:

    郭龙(1980-), 男, 陕西淳化人, 高级工程师。研究方向:结冰与防除冰研究。通信地址:四川省绵阳市二环路南段6号(621000)。E-mail:lgguo@163.com

    通讯作者:

    刘森云   E-mail: cardclsy@163.com

  • 中图分类号: V211.79

Experimental investigation of water droplet deformation and the effect on its drag characteristic

  • 摘要: 为了探索飞机结冰研究中水滴撞击过程的变形行为发生机理和本质特征,提高结冰数值模拟的精准度,利用高速相机对水滴加速运动过程的变形现象进行了实验研究。通过研究,定义了水滴变形过程的4个典型形态,分析了水滴变形与各无量纲量的关系,拟合了水滴变形后的阻力系数曲线和计算式。研究表明:水滴在气动力作用下会发生显著的变形现象,依次历经圆球形、椭球形、半球形、圆盘形4种典型形状;水滴的纵横比随韦伯数(We)的增大呈线性减小,随邦德数(Bo)的增大呈双曲线减小;水滴变形会导致其阻力系数增大,在Re=500左右时,水滴阻力系数曲线开始脱离球形阻力系数曲线,逐渐增大至接近圆盘形阻力系数曲线,这与其变形过程一致。
  • 图  1  实验系统图

    Figure  1.  Diagram of experimental system

    图  2  压电式等径离散水滴发生器

    Figure  2.  Piezoelectric mono-dispersed droplet generator

    图  3  等径离散水滴

    Figure  3.  Mono-dispersed droplets

    图  4  水滴图像处理

    Figure  4.  Droplets image processing

    图  5  收缩段和实验段中心线气流速度

    Figure  5.  Velocity at the center line of contraction section and experimental section

    图  6  收缩段出口气流速度计算值与实测值对比图

    Figure  6.  Comparison between the calculated value and the measured value of the air velocity at the outlet of the contraction section

    图  7  稳定球形水滴受力

    Figure  7.  The force of the stabilized spherical droplets

    图  8  水滴变形演化过程

    Figure  8.  The evolution of the droplet deformation

    图  9  水滴变形形状

    Figure  9.  The shape of the distorted droplets

    图  10  水滴纵横比与We的关系

    Figure  10.  The relationship between the droplet′s aspect ratio and We

    图  11  水滴纵横比与Bo的关系

    Figure  11.  The relationship between the droplet′s aspect ratio and Bo

    图  12  水滴纵横比与Sn的关系

    Figure  12.  The relationship between the droplet′s aspect ratio and Sn

    图  13  水滴纵横比的实验测量值与计算值对比

    Figure  13.  Comparison of the measured results and calculated values of the droplet′s aspect ratio

    图  14  水滴阻力系数随Re变化

    Figure  14.  The drag coefficient of droplets varies with Re

    图  15  水滴阻力系数与圆球形、圆盘形阻力系数对比

    Figure  15.  Comparison of the drag coefficient among the droplets, spheres and disks

    表  1  不同转速下收缩段入口与出口气流速度

    Table  1.   The air velocity at the inlet and outlet of the contraction section at different rotating speeds

    Case n/(r·min-1) vin/(m·s-1) vout/(m·s-1)
    Case1-1 1100 3.47 13.90
    Case1-2 1400 4.28 17.70
    Case1-3 1700 5.36 21.70
    Case1-4 2000 6.31 25.40
    Case1-5 2300 7.17 29.40
    Case1-6 2600 8.13 33.40
    Case1-7 2800 8.84 35.90
    下载: 导出CSV
  • [1] 裘燮纲, 韩凤华.飞机防冰系统[M].北京:航空专业教材编审组, 1985.
    [2] PEREIRA C M. Status of NTSB aircraft icing certification-related safety recommendations issued as a result of the 1994 ATR-72 accident at Roselawn, IN[R]. AIAA 97-0410, 1997.
    [3] MILLER D, RATVASKY T, BERNSTEIN B, et al. NASA/FAA/NCAR supercooled large droplet icing flight research - Summary of winter 96-97 flight operations[R]. AIAA-98-0577, 1998.
    [4] TAN J, PAPADAKIS M, SAMPATH M K. Computational study of large droplet breakup in the vicinity of an airfoil[R]. DOT/FAA/AR-05/42, 2005.
    [5] TAN S C, BARTLETT P G. An experimental study of droplet break-up using a wind tunnel[R]. AIAA 2003-391, 2003.
    [6] LUXFORD G, HAMMOND D, IVEY P. Modelling, imaging and measurement of distortion, drag and break-up of aircraft-icing droplets[R]. AIAA 2005-71, 2005.
    [7] HAMMOND D, QUERO M, IVEY P, et al. Analysis and experimental aspects of the impact of supercooled water droplets into thin water films[R]. AIAA 2005-77, 2005.
    [8] 孙志国, 朱程香, 付斌, 等.二维翼型结冰数值计算[J].航空动力学报, 2010, 25(7):1485-1490. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201007006

    SUN Z G, ZHU C X, FU B, et al. Numerical research of ice accretion on two-dimensional airfoils[J]. Journal of Aerospace Power, 2010, 25(7):1485-1490. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201007006
    [9] LUXFORD G. Experimental and modelling investigation of the deformation, drag and break-up of drizzle droplets subjected to strong aerodynamics forces in relation to SLD aircraft icing[D]. England: Cranfield University, 2005.
    [10] GUNN R, KINZER G D. The terminal velocity of fall for water droplets in stagnant air[J]. Journal of Meteorology, 1949, 6(4):243-248. doi: 10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2
    [11] TAN C, PAPADAKIS M, MILLER D, et al. Experimental study of large droplet splashing and breakup[R]. AIAA 2007-904, 2007.
    [12] CLIFT R, GRACE J R, WEBER M E. Bubbles, drops and particles[M]. New York:Academic Press, 1978.
    [13] LANE W R, GREEN H L. The mechanics of drops and bubbles[M]. England:Cambridge University Press, 1956.
    [14] MAGARVEY R H, TAYLOR B W. Free fall breakup of large drops[J]. Journal of Applied Physics, 1956, 27(10):1129-1135. doi: 10.1063/1.1722216
    [15] SCHLICHTING H. Boundary-layer theory[M]. USA: McGraw-Hill Book Company, 1987.
    [16] NAKAYAMA Y, BOUCHER R F. Introduction to fluid mechanics[M]. England: Reed Educational and Professional Publishing Ltd., 1999.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  349
  • HTML全文浏览量:  154
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-18
  • 修回日期:  2020-07-29
  • 刊出日期:  2020-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日