留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

封闭空间中斜爆震驻定稳定性增强方法及其试验验证

刘彧 肖保国 王兰 陈伟强

刘彧, 肖保国, 王兰, 等. 封闭空间中斜爆震驻定稳定性增强方法及其试验验证[J]. 实验流体力学, 2021, 35(1): 109-116. doi: 10.11729/syltlx20200084
引用本文: 刘彧, 肖保国, 王兰, 等. 封闭空间中斜爆震驻定稳定性增强方法及其试验验证[J]. 实验流体力学, 2021, 35(1): 109-116. doi: 10.11729/syltlx20200084
LIU Yu, XIAO Baoguo, WANG Lan, et al. Standing stability enhancement method of oblique detonation waves in a confined space and its experimental validation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 109-116. doi: 10.11729/syltlx20200084
Citation: LIU Yu, XIAO Baoguo, WANG Lan, et al. Standing stability enhancement method of oblique detonation waves in a confined space and its experimental validation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 109-116. doi: 10.11729/syltlx20200084

封闭空间中斜爆震驻定稳定性增强方法及其试验验证

doi: 10.11729/syltlx20200084
基金项目: 

国家自然科学基金 11702316

国家自然科学基金 91641126

详细信息
    作者简介:

    刘彧(1986-), 男, 河南洛阳人, 助理研究员。研究方向: 爆震燃烧与推进。通信地址: 四川省绵阳市二环路南段6号(621000)。E-mail: liuyu@cardc.cn

    通讯作者:

    肖保国, E-mail: xiaobaoguo@cardc.cn

  • 中图分类号: V231

Standing stability enhancement method of oblique detonation waves in a confined space and its experimental validation

  • 摘要: 采用斜爆震燃烧的高超声速冲压发动机是具有潜力的高马赫数吸气式推进技术方案。克服斜爆震的驻定稳定性问题对实现该技术方案至关重要。本文提出了一种封闭空间中的斜爆震驻定稳定性增强方法,并基于此方法开展了马赫数8.0近真实条件下的直连式试验验证。采用阵列喷管制造超声速预混气,通过关闭近壁单元中的燃料供应,在壁面附近制造了不可燃气体层,使斜爆震入射到壁面附近时衰减为惰性激波,从而削弱了斜爆震的马赫反射,防止了壅塞,增强了斜爆震的驻定稳定性,实现了近真实条件下长时间稳定驻定的斜爆震燃烧。
  • 图  1  斜爆震入射到尾喷管上沿示意图[21]

    Figure  1.  Schematic of oblique detonation wave incident on the upper edge of the exit nozzle

    图  2  直连试验系统示意图

    Figure  2.  Schematic of the direct-connect experimental system

    图  3  直连试验系统实物图

    Figure  3.  Photograph of the direct-connect experimental system

    图  4  阵列喷管示意图

    Figure  4.  Schematic of the array nozzles

    图  5  阵列喷管及其下游100 mm内的流场速度云图

    Figure  5.  Velocity magnitude contour inside the array nozzles and 100 mm downstream

    图  6  y=206.4 mm上的马赫数和速度分布

    Figure  6.  Mach number and velocity magnitude distributions on the y=206.4 mm line

    图  7  y=206.4 mm上的总温和总压分布

    Figure  7.  Total temperature and pressure distributions on the y=206.4 mm line

    图  8  y=206.4 mm上的当量比分布

    Figure  8.  Equivalence ratio distributions on the y=206.4 mm line

    图  9  不同流向截面上的混合效率

    Figure  9.  Mixing efficiency on different streamwise slices

    图  10  不同流向位置的当量比分布

    Figure  10.  Equivalence ratio distributions at different streamwise locations

    图  11  x=1500 mm处的速度、马赫数、温度和压力分布

    Figure  11.  Velocity, Mach number, temperature and pressure distributions at x=1500 mm

    图  12  关闭壁面附近4个喷管单元的氢气后的流场在不同流向位置处的当量比分布

    Figure  12.  Equivalence ratio distributions at different streamwise locations when the hydrogen fuel of the four near-wall nozzle units are cut off

    图  13  未采用和采用驻定稳定性增强方法的斜爆震流场对比

    Figure  13.  Comparison of oblique detonation flow fields without and with standing stability enhancement method

    图  14  未采用驻定稳定性增强方法的斜爆震高速摄影照片

    Figure  14.  High-frequency camera photographs of the oblique detonation without standing stability enhancement method

    图  15  采用驻定稳定性增强方法的斜爆震高速摄影照片

    Figure  15.  High-frequency camera photographs of the oblique detonation with standing stability enhancement method

    图  16  采用驻定稳定性增强方法的燃烧室尾焰照片

    Figure  16.  Exit flame of the combustor with standing stability enhancement method

    图  17  长程试验中壁面压力随时间的变化曲线

    Figure  17.  Wall pressure versus time in the long-time experiment

  • [1] PRATT D T, HUMPHREY J W, GLENN D E. Morphology of standing oblique detonation waves[J]. Journal of Propulsion and Power, 1991, 7(5): 837-845. doi: 10.2514/3.23399
    [2] GHORBANIAN K, STERLING J D. Influence of formation processes on oblique detonation wave stabilization[J]. Journal of Propulsion and Power, 1996, 12(3): 509-517. doi: 10.2514/3.24064
    [3] ASHFORD S A, EMANUEL G. Wave angle for oblique detonation waves[J]. Shock Waves, 1994, 3(4): 327-329. doi: 10.1007/bf01415831
    [4] VERREAULT J, HIGGINS A J, STOWE R A. Formation and structure of steady oblique and conical detonation waves[J]. AIAA Journal, 2012, 50(8): 1766-1772. doi: 10.2514/1.j051632
    [5] CHOI J Y, SHIN E J R, JEUNG I S. Unstable combustion induced by oblique shock waves at the non-attaching condition of the oblique detonation wave[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2387-2396. doi: 10.1016/j.proci.2008.06.212
    [6] KASAHARA J, HORⅡ T, ENDO T, et al. Experimental observation of unsteady H2-O2 combustion phenomena around hypersonic projectiles using a multiframe camera[J]. Symposium (International) on Combustion, 1996, 26(2): 2903-2908. doi: 10.1016/s0082-0784(96)80131-7
    [7] KASAHARA J, FUJIWARA T, ENDO T, et al. Chapman-jouguet oblique detonation structure around hypersonic projectiles[J]. AIAA Journal, 2001, 39(8): 1553-1561. doi: 10.2514/2.1480
    [8] KASAHARA J, ARAI T, CHIBA S, et al. Criticality for stabilized oblique detonation waves around spherical bodies in acetylene/oxygen/krypton mixtures[J]. Proceedings of the Combustion Institute, 2002, 29(2): 2817-2824. doi: 10.1016/s1540-7489(02)80344-3
    [9] MAEDA S, KASAHARA J, MATSUO A. Oblique detonation wave stability around a spherical projectile by a high time resolution optical observation[J]. Combustion and Flame, 2012, 159(2): 887-896. doi: 10.1016/j.combustflame.2011.09.001
    [10] MAEDA S, SUMIYA S, KASAHARA J, et al. Initiation and sustaining mechanisms of stabilized Oblique Detonation Waves around projectiles[J]. Proceedings of the Combustion Institute, 2013, 34(2): 1973-1980. doi: 10.1016/j.proci.2012.05.035
    [11] MAEDA S, SUMIYA S, KASAHARA J, et al. Scale effect of spherical projectiles for stabilization of oblique detonation waves[J]. Shock Waves, 2015, 25(2): 141-150. doi: 10.1007/s00193-015-0549-4
    [12] TENG H H, JIANG Z L. On the transition pattern of the oblique detonation structure[J]. Journal of Fluid Mechanics, 2012, 713: 659-669. doi: 10.1017/jfm.2012.478
    [13] TENG H H, JIANG Z L, NG H D. Numerical study on unstable surfaces of oblique detonations[J]. Journal of Fluid Mechanics, 2014, 744: 111-128. doi: 10.1017/jfm.2014.78
    [14] TENG H H, NG H D, LI K, et al. Evolution of cellular structures on oblique detonation surfaces[J]. Combustion and Flame, 2015, 162(2): 470-477. doi: 10.1016/j.combustflame.2014.07.021
    [15] YANG P F, TENG H H, JIANG Z L, et al. Effects of inflow Mach number on oblique detonation initiation with a two-step induction-reaction kinetic model[J]. Combustion and Flame, 2018, 193: 246-256. doi: 10.1016/j.combustflame.2018.03.026
    [16] LIU Y, WANG L, XIAO B G, et al. Hysteresis phenomenon of the oblique detonation wave[J]. Combustion and Flame, 2018, 192: 170-179. doi: 10.1016/j.combustflame.2018.02.010
    [17] LU F K, FAN H Y, WILSON D R. Detonation waves induced by a confined wedge[J]. Aerospace Science and Technology, 2006, 10(8): 679-685. doi: 10.1016/j.ast.2006.06.005
    [18] SISLIAN J P, SCHIRMER H, DUDEBOUT R, et al. Propulsive performance of hypersonic oblique detonation wave and shock-induced combustion ramjets[J]. Journal of Propulsion and Power, 2001, 17(3): 599-604. doi: 10.2514/2.5783
    [19] SCHWARTZENTRUBER T E, SISLIAN J P, PARENT B. Suppression of premature ignition in the premixed inlet flow of a shcramjet[J]. Journal of Propulsion and Power, 2005, 21(1): 87-94. doi: 10.2514/1.7003
    [20] SISLIAN J P, MARTENS R P, SCHWARTZENTRUBER T E, et al. Numerical simulation of a real shcramjet flowfield[J]. Journal of Propulsion and Power, 2006, 22(5): 1039-1048. doi: 10.2514/1.14895
    [21] ALEXANDER D C, SISLIAN J P. Computational study of the propulsive characteristics of a shcramjet engine[J]. Journal of Propulsion and Power, 2008, 24(1): 34-44. doi: 10.2514/1.29951
    [22] EVANS J S, SCHEXNAYDER C J Jr. Influence of chemical kinetics and unmixedness on burning in supersonic hydrogen flames[J]. AIAA Journal, 1980, 18(2): 188-193. doi: 10.2514/3.50747
    [23] FANG Y S, HU Z M, TENG H H, et al. Numerical study of inflow equivalence ratio inhomogeneity on oblique detonation formation in hydrogen-air mixtures[J]. Aerospace Science and Technology, 2017, 71: 256-263. doi: 10.1016/j.ast.2017.09.027
    [24] IWATA K, NAKAYA S, TSUE M. Wedge-stabilized oblique detonation in an inhomogeneous hydrogen-air mixture[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2761-2769. doi: 10.1016/j.proci.2016.06.094
    [25] BEN-DOR G. Shock wave reflection phenomena[M]. 2nd edition. Berlin: Springer, 2007.
  • 加载中
图(17)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  75
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-16
  • 修回日期:  2020-10-20
  • 刊出日期:  2021-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日