留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面叶栅试验件加工工艺对性能测量影响的试验研究

王晖 唐凯 代秋林 刘志刚 凌代军

王晖, 唐凯, 代秋林, 等. 平面叶栅试验件加工工艺对性能测量影响的试验研究[J]. 实验流体力学, 2021, 35(2): 67-74. doi: 10.11729/syltlx20200087
引用本文: 王晖, 唐凯, 代秋林, 等. 平面叶栅试验件加工工艺对性能测量影响的试验研究[J]. 实验流体力学, 2021, 35(2): 67-74. doi: 10.11729/syltlx20200087
WANG Hui, TANG Kai, DAI Qiulin, et al. Experimental research on the effect of processing technology of cascade test article on the performance measurement[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 67-74. doi: 10.11729/syltlx20200087
Citation: WANG Hui, TANG Kai, DAI Qiulin, et al. Experimental research on the effect of processing technology of cascade test article on the performance measurement[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 67-74. doi: 10.11729/syltlx20200087

平面叶栅试验件加工工艺对性能测量影响的试验研究

doi: 10.11729/syltlx20200087
详细信息
    作者简介:

    王晖(1981-), 女, 湖北枣阳人, 高级工程师。研究方向: 燃气涡轮发动机叶片吹风试验技术。通信地址: 江苏省连云港市经济开发区黄海大道56号(222000)。E-mail: wh99313@163.com

    通讯作者:

    王晖, E-mail: wh99313@163.com

  • 中图分类号: V233

Experimental research on the effect of processing technology of cascade test article on the performance measurement

  • 摘要: 针对近年来平面叶栅试验研究过程中出现的试验件加工问题,对直叶片加工工艺、有机玻璃栅板加工工艺以及成套叶栅试验件关键参数的检测方法进行了工艺试验和叶栅试验器试验验证。结果表明,综合考虑加工成本和粗糙度对性能的影响规律,建议高速高负荷叶栅叶片表面粗糙度应不低于Ra=1.6。航空有机玻璃的选材、加工工序、工艺以及装配使用不当会导致试验过程中出现应力纹和黑圈,从而对高速状态下的可视化测量造成不利影响。通过改进成套叶栅试验件关键参数的检测方法,试验件加工质量有了较大提升,有助于获得更为准确可靠的性能试验数据。
  • 图  1  不同走丝方式获得的样件

    Figure  1.  Sample pieces from different processing methods

    图  2  不同试验雷诺数状态下叶片表面等熵马赫数分布

    Figure  2.  Isentropic Mach number distribution at different Reynolds number states

    图  3  i=0°、Re=1.29×106时吸力面油流图片

    Figure  3.  Suction side oil flow pictures at i=0°, Re=1.29×106

    图  4  不同试验马赫数状态下叶片表面等熵马赫数分布

    Figure  4.  Isentropic Mach number distribution at different Mach number states

    图  5  总压损失系数随进口马赫数的变化曲线

    Figure  5.  Total pressure loss variation with inlet Mach number at different blade surface roughness states

    图  6  航空有机玻璃栅板平面叶栅试验件

    Figure  6.  Cascade test model with Aero-Plexiglass sidewall

    图  7  存在抛光精磨问题的航空有机玻璃栅板

    Figure  7.  Cascade models with Aero-Plexiglass sidewall which have polishing and fine grinding problems

    图  8  孔槽塌边造成的黑圈示意图

    Figure  8.  Schilieren picture with black areas due to the chamfer edge collapse

    图  9  基本叶片检测样件

    Figure  9.  Detection sample of test blade

    图  10  专用基本叶片工装示意图

    Figure  10.  Special tooling for test blade detection

    图  11  试验件尾缘直线度及栅距检测位置示意图

    Figure  11.  Schematic diagram of detection methods for trailing edge straightness and pitch

    图  12  喉宽及安装角测量示意图

    Figure  12.  Schematic diagram of detection methods for the throat width and stagger angle

    图  13  叶片表面等熵马赫数分布对比

    Figure  13.  Comparison of isentropic Mach number distribution between adjacent channels

    表  1  不同线切割方式对比

    Table  1.   Comparison of different wire-electrode cutting methods

    走丝方式 走丝速度/(mm·s-1) 加工粗糙度(Ra) 特点
    快走丝 10~20 2.4~3.2 电极丝高速往返运动, 精度低
    中走丝 粗加工8~12
    精加工1~3
    1.2~1.6 多次切割,精度提高
    慢走丝 <0.25 0.8及以上 电极丝低速单向运动,精度高
    注:获得的加工粗糙度范围基于工艺试验
    下载: 导出CSV
  • [1] 金秀杰, 马艳玲, 高见. 压气机叶片型面精密数控加工技术[C]//第十五届中国科协年会第13分会场: 航空发动机设计、制造与应用技术研讨会论文集. 2013.
    [2] 刘维伟, 李杰光, 赵明, 等. 航空发动机薄壁叶片加工变形误差补偿技术研究[J]. 机械设计与制造, 2009(10): 175-177. doi: 10.3969/j.issn.1001-3997.2009.10.070

    LIU W W, LI J G, ZHAO M, et al. Research on the compensation of deformation error in NC machining of thin-walled blades[J]. Machinery Design & Manufacture, 2009(10): 175-177. doi: 10.3969/j.issn.1001-3997.2009.10.070
    [3] 高丽敏, 蔡宇桐, 曾瑞慧, 等. 叶片加工误差对压气机叶栅气动性能的影响[J]. 推进技术, 2017, 38(3): 525-531. doi: 10.13675/j.cnki.tjjs.2017.03.007

    GAO L M, CAI Y T, ZENG R H, et al. Effects of blade machining error on compressor cascade aerodynamic performance[J]. Journal of Propulsion Technology, 2017, 38(3): 525-531. doi: 10.13675/j.cnki.tjjs.2017.03.007
    [4] 李正, 余华蔚, 尹红顺, 等. 椭圆前缘锐化度对亚声速压气机叶片性能的影响[J]. 燃气涡轮试验与研究, 2018, 31(3): 14-17, 42. doi: 10.3969/j.issn.1672-2620.2018.03.003

    LI Z, YU H W, YIN H S, et al. The influence of ellipse leading edge sharpness on the performance of subsonic compressorblade[J]. Gas Turbine Experiment and Research, 2018, 31(3): 14-17, 42. doi: 10.3969/j.issn.1672-2620.2018.03.003
    [5] 曹传军, 邱毅, 李斌. 亚声叶型前缘形状对压气机气动性能的影响[J]. 燃气涡轮试验与研究, 2018, 31(6): 1-7. doi: 10.3969/j.issn.1672-2620.2018.06.001

    CAO C J, QIU Y, LI B. Influence of leading edge shape of subsonic airfoil on compressor aerodynamicperformance[J]. Gas Turbine Experiment and Research, 2018, 31(6): 1-7. doi: 10.3969/j.issn.1672-2620.2018.06.001
    [6] 张伟昊, 邹正平, 李维, 等. 叶型偏差对涡轮性能影响的非定常数值模拟研究[J]. 航空学报, 2010, 31(11): 2130-2138. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201011005.htm

    ZHANG W H, ZOU Z P, LI W, et al. Unsteady numerical simulation investigation of effect of blade profile deviation on turbine performance[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2130-2138. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201011005.htm
    [7] 张伟昊, 邹正平, 刘火星, 等. 叶型偏差对整机环境中涡轮性能的影响[J]. 工程热物理学报, 2010, 31(11): 1830-1834. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201011010.htm

    ZHANG W H, ZOU Z P, LIU H X, et al. Effect of profile deviation on turbine performance in whole engine environment[J]. Journal of Engineering Thermophysics, 2010, 31(11): 1830-1834. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201011010.htm
    [8] BACK S C, HOBSON G V, SONG S J, et al. Effects of Reynolds number and surface roughness magnitude and location on compressor cascade performance[J]. Journal of Turbomachinery, 2012, 134(5): 051013. doi: 10.1115/1.4003821
    [9] SCHLICHTING H, GERSTEN K. Boundary-layer theory[M]. New York: McGraw-Hill, 1979.
    [10] MONTIS M, NIEHUIS R, FIALA A. Aerodynamic measurements on a low pressure turbine cascade with different levels of distributed roughness[C]//Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. 2012. doi: 10.1115/GT2011-45015
    [11] 余心明, 戴青. 影响线切割加工表面粗糙度的因素及应对措施[J]. 科技与企业, 2013(22): 392. doi: 10.13751/j.cnki.kjyqy.2013.22.365
    [12] 杨蕾, 蔡安江. 电火花线切割加工参数对加工速度和表面粗糙度影响的研究[J]. 机床与液压, 2011, 39(15): 45-47. doi: 10.3969/j.issn.1001-3881.2011.15.014

    YANG L, CAI A J. Research on influence of processing parameters on processing speed and surface roughness in WEDM[J]. Machine Tool & Hydraulics, 2011, 39(15): 45-47. doi: 10.3969/j.issn.1001-3881.2011.15.014
    [13] 周桂莲, 张迪. 汽轮机叶片材料1Cr13钢线切割表面粗糙度正交试验研究[J]. 工具技术, 2010, 44(5): 33-35. doi: 10.16567/j.cnki.1000-7008.2010.05.008

    ZHOU G L, ZHANG D. Orthogonal experiment investigation on surface roughness of WEDM in machining 1Cr13 steel turbineblade[J]. Tool Engineering, 2010, 44(5): 33-35. doi: 10.16567/j.cnki.1000-7008.2010.05.008
    [14] 万枝铭. 有机玻璃零件的加工[J]. 机械工程师, 2007(5): 147-148. doi: 10.3969/j.issn.1002-2333.2007.05.076

    WAN Z M. The processing of PMMA components[J]. Mechanical Engineer, 2007(5): 147-148. doi: 10.3969/j.issn.1002-2333.2007.05.076
    [15] 万庆, 李晓波, 李鹏飞, 等. 有机玻璃零件的数控加工[J]. 金属加工(冷加工), 2018(11): 28-29. doi: 10.3969/j.issn.1674-1641.2018.11.014

    WAN Q, LI X B, LI P F, et al. The CNC machining of PMMA components[J]. Metal Working (Metal Cutting), 2018(11): 28-29. doi: 10.3969/j.issn.1674-1641.2018.11.014
    [16] 唐凯, 刘志刚, 王晖, 等. 叶片表面粗糙度对前弯压气机叶片流动特性影响的试验研究[J]. 推进技术, 2020, 41(8): 1710-1719. doi: 10.13675/j.cnki.tjjs.190486

    TANG K, LIU Z G, WANG H, et al. Experimental investigation of surface roughness on flow around forward-skewed compressor blade[J]. Journal of Propulsion Technology, 2020, 41(8): 1710-1719. doi: 10.13675/j.cnki.tjjs.190486
    [17] 孙玉福. 实用工程材料手册[M]. 北京: 机械工业出版社, 2014: 353.

    SUN Y F. Practical engineering material manual[M]. Beijing: China Machine Press, 2014: 353.
    [18] 中国航空材料手册编辑委员会. 中国航空材料手册6[M]. 北京: 中国标准出版社, 1989.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  170
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-18
  • 修回日期:  2020-10-07
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日