留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

叶栅试验技术综述

凌代军 代秋林 朱榕川 王晖 赵建通

凌代军, 代秋林, 朱榕川, 等. 叶栅试验技术综述[J]. 实验流体力学, 2021, 35(3): 30-38. doi: 10.11729/syltlx20200102
引用本文: 凌代军, 代秋林, 朱榕川, 等. 叶栅试验技术综述[J]. 实验流体力学, 2021, 35(3): 30-38. doi: 10.11729/syltlx20200102
LING Daijun, DAI Qiulin, ZHU Rongchuan, et al. Review of the cascade experimental technology[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 30-38. doi: 10.11729/syltlx20200102
Citation: LING Daijun, DAI Qiulin, ZHU Rongchuan, et al. Review of the cascade experimental technology[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 30-38. doi: 10.11729/syltlx20200102

叶栅试验技术综述

doi: 10.11729/syltlx20200102
详细信息
    作者简介:

    凌代军(1971-), 男, 四川资阳人, 研究员。研究方向: 叶型试验与分析, 叶轮机及部件试验技术。通信地址: 四川省绵阳市游仙区小枧镇航空路1号叶轮机试验研究室(621000)。E-mail: gteldj@163.com

    通讯作者:

    凌代军, E-mail: gteldj@163.com

  • 中图分类号: V231.3

Review of the cascade experimental technology

  • 摘要: 叶型设计是现代航空发动机和燃气轮机气动热力领域最基础的研究内容,叶栅试验是叶型设计方法探索、工程设计验证中经济快捷的重要工具,在现代航空发动机压气机和涡轮叶型气动设计研究中发挥了重要的作用。试验环境和条件的模拟是叶栅试验技术的核心和关键,随着叶型设计技术发展与叶型性能的进步,叶栅试验技术亟需在流场周期性、轴向密流比、三维效应、低雷诺数以及非定常效应等环境模拟方面进行拓展和完善,以便更准确可靠地获取叶型总性能的变化规律,为研究引起性能变化的流动机理和流场特征奠定基础。本文概述了叶栅试验技术发展历史,并对近年来技术研究新方向、新领域进行分析,以期为相关研究提供参考。
  • 图  1  叶栅原理示意图

    Figure  1.  schematic diagram of cascade

    图  2  叶型设计对压气机压比和效率影响趋势

    Figure  2.  The influence of profile design on compressor pressure ratio and efficiency

    图  3  叶栅试验段上下驻室面长度偏差示意图

    Figure  3.  Schematic ofthe ceiling length difference of the cascade test section

    图  4  通过抽气控制叶栅试验AVDR[18]

    Figure  4.  AVDR regulation and control by air bleed or suction[18]

    图  5  美国NASA某超声速压气机叶栅试验[25]

    Figure  5.  A supersonic compressor cascade test (NASA)[25]

    图  6  PW545低压涡轮效率随雷诺数的变化[26]

    Figure  6.  PW545 low pressure turbine efficiency variation with Reynolds number[26]

    图  7  扇形叶栅试验段出口消旋叶片示意图[47]

    Figure  7.  2D unwrapped schematic of the working section of the annular sector heat transfer facility[47]

    图  8  变进气攻角转接段[48]

    Figure  8.  Variable inlet angle switching section for sector cascade[48]

  • [1] 桂幸民, 滕金芳, 刘宝杰, 等. 航空压气机气动热力学理论与应用[M]. 上海: 上海交通大学出版社, 2014: 21-26.

    GUI X M, TENG J F, LIU B J, et al. Compressor aerothermodynamics and its applications in aircraft engines[M]. Shanghai: Shanghai Jiao Tong University Press, 2014: 21-26.
    [2] NASA. 轴流压气机气动设计[M]. 秦鹏, 译. 北京: 国防工业出版社, 1975: 10-15.
    [3] DUNAVANT J C, EMERY J C, WALCH H C, et al. High-speed cascade tests of the NACA 65- (12 A (sub 10)) 10 and NACA 65- (12 A (sub 2) I (sub 8b)) 10 compressor blade sections[R]. NACA RM L55J08, 1955.
    [4] EMERY J C, DUNAVANT J C. Two-dimensional cascade tests of NACA 65- (C (sub zeta) (sub o)) A (sub 10)) 10 blade sections at typical compressor hub conditions for speeds up to choking[R]. NACA RM L57H05, 1957.
    [5] LIEBLEIN S. Aerodynamic design of axial-flow compressors. Ⅵ-experimental flow in two-dimensional cascades[R]. NACA RM E55K01a, 1955.
    [6] 忻建华, 钟芳源. 燃气轮机设计基础[M]. 上海: 上海交通大学出版社, 2015: 212-237.

    XIN J H, ZHONG F Y. Gas turbine design fundament[M]. Shanghai: Shanghai Jiao Tong University Press, 2015: 212-237.
    [7] PETER J S. The history of aircraft turbine engine development in the united states: a tradition of excellence[M]. 北京: 航空工业出版社, 2016.
    [8] 钟兢军, 王会社, 王仲奇. 多级压气机中可控扩散叶型研究的进展与展望第一部分可控扩散叶型的设计与发展[J]. 航空动力学报, 2001, 16(3): 205-211. doi: 10.13224/j.cnki.jasp.2001.03.003

    ZHONG J J, WANG H S, WANG Z Q. Development and prospect of controlled diffusion airfoils for multistage compressor part Ⅰ: design and development of controlled diffusion airfoils[J]. Journal of Aerospace Power, 2001, 16(3): 205-211. doi: 10.13224/j.cnki.jasp.2001.03.003
    [9] 王会社, 钟兢军, 王仲奇. 多级压气机中可控扩散叶型研究的进展与展望第二部分可控扩散叶型的实验与数值模拟[J]. 航空动力学报, 2002, 17(1): 16-22. doi: 10.13224/j.cnki.jasp.2002.01.002

    WANG H S, ZHONG J J, WANG Z Q. Development of controlled diffusion airfoils for multistage compressor application part 2 test and numerical simulation of controlled diffusion airfoils[J]. Journal of Aerospace Power, 2002, 17(1): 16-22. doi: 10.13224/j.cnki.jasp.2002.01.002
    [10] 张广. 叶型改型对压气机跨声速叶栅气动性能影响的研究[D]. 沈阳: 沈阳航空工业学院, 2009.

    ZHANG G. Numerical simulation of the aerodynamic performance of the improved compressor blade[D]. Shenyang: Shen-yang Institute of Aeronautical Engineering, 2009.
    [11] 戈登·C. 奥兹. 航空发动机部件气动热力学[M]. 金东海, 高军辉, 金捷, 等译. 北京: 航空工业出版社, 2016: 164-172.

    OATES G C. Aerothermodynamics of aircraft engine components[M]. Translated by JIN H D, GAO J H, JIN J, et al. Beijing: Aviation Industry Press, 2016: 164-172.
    [12] LEPICOVSKY J, MCFARLAND E R, CHIMA R V, et al. On flowfield periodicity in the NASA transonic flutter cascade: part Ⅰ-experimental study[R]. 2000-GT-0572, 2000. doi: 10.1115/2000-GT-0572
    [13] SONG B, GUI X M, LI S M, et al. Flow periodicity improvement in a high speed compressor cascade with a large turning-angle[R]. AIAA 2002-3539, 2002. doi: 10.2514/6.2002-3539
    [14] STEINERT W, EISENBERG B, STARKEN H. Design and testing of a controlled diffusion airfoil cascade for industrial axial flow compressor application[J]. Journal of Turbomachinery, 1991, 113(4): 583-590. doi: 10.1115/1.2929119
    [15] STEINERT W, STARKEN H. Off-design transition and separation behavior of a CDA cascade[J]. Journal of Turbomachinery, 1996, 118(2): 204-210. doi: 10.1115/1.2836627
    [16] 高丽敏, 蔡明, 刘哲, 等. 附面层抽吸对叶栅风洞流场品质的影响研究[C]//中国工程热物理学会热机气动热力学和流体机械学术会议论文集. 2019.
    [17] 巩昊, 徐惊雷, 陈宇. 开槽尾流板对跨声速涡轮平面叶栅流场影响的实验[J]. 航空动力学报, 2018, 33(12): 3048-3056. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201812027.htm

    GONG H, XU J L, CHEN Y. Experiment on effects of slotted tailboard on flow field of transonic turbine linear cascade[J]. Journal of Aerospace Power, 2018, 33(12): 3048-3056. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201812027.htm
    [18] SONG B, NG W. Influence of axial velocity density ratio in cascade testing of supercritical compressor blades[R]. AIAA 2004-3414, 2004. doi: 10.2514/6.2004-3414
    [19] 姜正礼. 轴向速度密度比AVDR对压气机叶栅性能影响的试验研究[J]. 燃气涡轮试验与研究, 1995(4): 4-9. https://www.cnki.com.cn/Article/CJFDTOTAL-RQWL199504001.htm

    JIANG Z L. Experimental investigation of AVDR influence on compressor cascade performance[J]. Gas Turbine Experiment and Research, 1995(4): 4-9. https://www.cnki.com.cn/Article/CJFDTOTAL-RQWL199504001.htm
    [20] 邓熙, 刘波, 马乃行. 高亚声速大弯角轴流压气机平面叶栅损失模型研究[J]. 推进技术, 2015, 36(9): 1302-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201509004.htm

    DENG X, LIU B, MA N X. Investigation of loss model applicable to large range of high subsonic cascades in axial-flow compressor[J]. Journal of Propulsion Technology, 2015, 36(9): 1302-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201509004.htm
    [21] TWEEDT D L, SCHREIBER H A, STARKEN H. Experimental investigation of the performance of a supersonic compressor cascade[J]. Journal of Turbomachinery, 1988, 110(4): 456-466. doi: 10.1115/1.3262219
    [22] BODE C, KOŽULOVIĆ D, STARK U, et al. Performance and boundary layer development of a high turning compressor cascade at sub- and supercritical flow conditions[C]//Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. 2013. doi: 10.1115/GT2012-68382
    [23] HERGT A, MEYER R, LIESNER K, et al. A new approach for compressor endwall contouring[R]. GT2011-45858, 2011.
    [24] JOUINI D B M, SJOLANDER S A, MOUSTAPHA S H. Midspan flow-field measurements for two transonic linearturbine cascades at off-design conditions[C]//Proceedings of ASME Turbo Expo 2001: Power for Land, Sea, and Air. 2014. doi: 10.1115/2001-GT-0493
    [25] HOLTMAN R L, HUFFMAN G D, MECLURE R B, et al. Test of a supersonic compressor cascade (Vol Ⅰ)[R]. ARL 72-0170, 1972.
    [26] 邹正平, 王松涛, 刘火星, 等. 航空燃气轮机涡轮气体动力学: 流动机理及气动设计[M]. 上海: 上海交通大学出版社, 2014: 186-188.

    ZOU Z P, WANG S T, LIU H X, et al. Turbine aerodynamics for aero-engine turbine aerodynamics for aero-engine: Flow analysis and aerodynamics design[M]. Shanghai: Shanghai Jiao Tong University Press, 2014: 186-188.
    [27] 李维, 邹正平. 低雷诺数环境中低压涡轮部件的气动设计探索[J]. 推进技术, 2004, 25(3): 219-223. doi: 10.3321/j.issn:1001-4055.2004.03.007

    LI W, ZOU Z P. Investigation of aerodynamic design of low pressure turbine at low Reynolds number conditions[J]. Journal of Propulsion Technology, 2004, 25(3): 219-223. doi: 10.3321/j.issn:1001-4055.2004.03.007
    [28] 邹正平, 宁方飞, 刘火星, 等. 雷诺数对涡轮叶栅流动的影响[J]. 工程热物理学报, 2004, 25(2): 216-219. doi: 10.3321/j.issn:0253-231X.2004.02.010

    ZOU Z P, NING F F, LIU H X, et al. Effect of Reynolds number on turbine cascade flow[J]. Journal of Engineering Thermophysics, 2004, 25(2): 216-219. doi: 10.3321/j.issn:0253-231X.2004.02.010
    [29] 凌代军, 姜正礼, 于进涛, 等. 低雷诺数平面叶栅试验方法研究[J]. 燃气涡轮试验与研究, 2011, 24(3): 1-6. doi: 10.3969/j.issn.1672-2620.2011.03.002

    LING D J, JIANG Z L, YU J T, et al. Experimental investigation methods on low Reynolds number plane cascade[J]. Gas Turbine Experiment and Research, 2011, 24(3): 1-6. doi: 10.3969/j.issn.1672-2620.2011.03.002
    [30] 伊进宝, 乔渭阳. 低雷诺数下涡轮叶栅流动分离实验与数值模拟[J]. 推进技术, 2008, 29(2): 208-213. doi: 10.3321/j.issn:1001-4055.2008.02.016

    YIJ B, QIAO W Y. Experimental and numerical investigation on flow separation in turbine cascade with low Reynolds number[J]. Journal of Propulsion Technology, 2008, 29(2): 208-213. doi: 10.3321/j.issn:1001-4055.2008.02.016
    [31] HERGT A, STEINERT W, GRUND S. Design and experimental investigation of a compressor cascade for low Reynolds number conditions[R]. ISABE-2013-1104, 2013.
    [32] MAHALLATI A, MCAULIFFE B R, SJOLANDER S A, et al. Aerodynamics of a low-pressure turbine airfoil at low Rey-nolds numbers-part Ⅰ: steady flow measurements[J]. Journal of Turbomachinery, 2013, 135(1): 1-9. doi: 10.1115/1.4006319
    [33] RIVIR R, SONDERGAARD R, DAHLSTROM M, et al. Low Reynolds number turbine blade cascade calculations[R]. WL-TR-2087, 1996.
    [34] OLHOFER M, SENDHOFF B, SCHREIBER H. Advanced high turning compressor airfoils for low Reynolds number condition part 1: design and optimization[R]. GT2003-38458, 2003.
    [35] MARTINSTETTER M, NIEHUIS R, FRANKE M. Passive boundary layer control on a highly loaded low pressure turbine cascade[C]//Proceedings of ASME Turbo Expo 2010: Power for Land. 2010. doi: 10.1115/GT2010-22739
    [36] MICHÁLEK J, MONALDI M, ARTS T. Aerodynamic performance of a very high lift low pressure turbine airfoil (T106C) at low Reynolds and high Mach number with effect of free stream turbulence intensity[J]. Journal of Turbomachi-nery, 2012, 134(6): 1-10. doi: 10.1115/1.4006291
    [37] STURM W, FOTTNER L. The high-speed cascade wind-tunnel of the german armed forces university munich. [C]//Proc of 8th Symposium on Measuring Techniques for Transonic and Supersonic Flows in Cascade and Turbomachines. 1985.
    [38] BETTNER J L. Experimental investigation in an annular cascade sector of highly loaded turbine stator blading volume Ⅳ: performance of jet-flapped blade[R]. NASA CR-1423, 1969.
    [39] WIERS S H, FRANSSON T H. Experimental investigation of aerodynamic effects of film cooling on a modern 3-dimensional nozzle guide vane[R]. ISABE-2001-1097, 2001.
    [40] WIERS S H, FRANSSON T H, RÅDEKLINT U, et al. Flow field measurements in a cold flow annular sector turbine cascade test facility and an annular sector cascade test facility operating at near-engine conditions[C]//Proceedings of ASME Turbo Expo 2001: Power for Land, Sea, and Air. 2014. doi: 10.1115/2001-GT-0491
    [41] 滕礼志, 孙鹏, 傅文广, 等. 导流板结构对扇形叶栅试验件周期性影响的模拟研究[J]. 热能动力工程, 2017, 32(6): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS201706009.htm

    TENG L Z, SUN P, FU W G, et al. Numerical study on the influence of baffle structure on flow periodicity in sectorial cascade[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(6): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS201706009.htm
    [42] 唐国庆, 黄康才, 薛伟鹏. 超跨声涡轮扇形叶栅试验流场周期性设计[J]. 燃气涡轮试验与研究, 2018, 31(3): 27-31, 13. doi: 10.3969/j.issn.1672-2620.2018.03.006

    TANG G Q, HUANG K C, XUE W P. Periodic design of sector cascade test flow field for supersonic and transonic turbine[J]. Gas Turbine Experiment and Research, 2018, 31(3): 27-31, 13. doi: 10.3969/j.issn.1672-2620.2018.03.006
    [43] 朱兰, 张剑, 卿雄杰. 高压涡轮导向器扇形叶栅试验及改进设计验证[J]. 燃气涡轮试验与研究, 2014, 27(5): 19-24. doi: 10.3969/j.issn.1672-2620.2014.05.004

    ZHU L, ZHANG J, QING X J. Experiment and improved design verification on the sector cascade of high pressure turbine nozzle[J]. Gas Turbine Experiment and Research, 2014, 27(5): 19-24. doi: 10.3969/j.issn.1672-2620.2014.05.004
    [44] 王欢, 孙鹏, 徐林峰, 等. 压气机扇形叶栅出口流场周向均匀性影响因素[J]. 大连海事大学学报, 2019, 45(2): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201902011.htm

    WANG H, SUN P, XU L F, et al. Influence factors of the flow field circumferential uniformity at the sector cascade outlet of compressor[J]. Journal of Dalian Maritime University, 2019, 45(2): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201902011.htm
    [45] 姜正礼, 凌代军, 王晖. 高压涡轮导向器扇形叶栅试验研究[J]. 燃气涡轮试验与研究, 2006, 19(1): 17-20, 53. doi: 10.3969/j.issn.1672-2620.2006.01.004

    JIANG Z L, LING D J, WANG H. Experimental investigation on the sector cascade of high pressure turbine guide[J]. Gas Turbine Experiment and Research, 2006, 19(1): 17-20, 53. doi: 10.3969/j.issn.1672-2620.2006.01.004
    [46] YASA T, PANIAGUA G, FRIDH J, et al. Performance of a nozzle guide vane in subsonic and transonic regimes tested in an annular sector[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. 2010. doi: 10.1115/GT2010-22901
    [47] POVEY T, JONES T V, OLDFIELD M L G. On a novel annular sector cascade technique[C]//Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air. 2004. doi: 10.1115/GT2004-53904
    [48] 孟福生, 高杰, 郑群, 等. 大子午扩张涡轮扇形叶栅变工况性能实验研究[J]. 推进技术, 2019, 40(5): 986-995. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201905005.htm

    MENG F S, GAO J, ZHENG Q, et al. Experimental study on large meridional expansion annular sector cascades with variable working conditions[J]. Journal of Propulsion Technology, 2019, 40(5): 986-995. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201905005.htm
    [49] 侯安平, 周盛. 轴流式叶轮机时序效应的机理探讨[J]. 航空动力学报, 2003, 18(1): 70-75. doi: 10.3969/j.issn.1000-8055.2003.01.012

    HOU A P, ZHOU S. Probe into the mechanism of clocking effect in turbomachinery[J]. Journal of Aerospace Power, 2003, 18(1): 70-75. doi: 10.3969/j.issn.1000-8055.2003.01.012
    [50] 周盛, 侯安平, 弓志强, 等. 关于轴流压气机的非定常两代流型[J]. 航空学报, 2005, 26(1): 1-7. doi: 10.3321/j.issn:1000-6893.2005.01.001

    ZHOU S, HOU A P, GONG Z Q, et al. Two generations of unsteady flow type for axial compressor[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(1): 1-7. doi: 10.3321/j.issn:1000-6893.2005.01.001
    [51] 刘景梅, 周盛. 叶轮机械新流型探索雏议[J]. 航空动力学报, 1995, 10(3): 205-209. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI503.000.htm

    LIU J M, ZHOU S. Preliminary search for new flow-types in turbomachinery[J]. Journal of Aerospace Power, 1995, 10(3): 205-209. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI503.000.htm
    [52] SIEVERDING C H, OTTOLIA D, BAGNERA C, et al. Unsteady turbine blade wake characteristics[C]//Proc of the Volume 6: Turbo Expo 2003, Parts A and B. 2003. doi: 10.1115/gt2003-38934
    [53] 周莉, 李妍, 王占学. 串列式叶栅扩压器非定常流动研究[J]. 工程热物理学报, 2017, 38(7): 1571-1576. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201707028.htm

    ZHOU L, LI Y, WANG Z X. Numerical investigation of unsteady flow in tandem cascades diffuser[J]. Journal of Engineering Thermophysics, 2017, 38(7): 1571-1576. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201707028.htm
    [54] 李军, 苏明. 涡轮叶栅非定常流动的PIV实验[J]. 华中科技大学学报(自然科学版), 2007, 35(S1): 133-135. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG2007S1037.htm

    LI J, SU M. Experiment on turbine blade unsteady flow with PIV[J]. Journal of Huazhong University of Science and Technology Nature Science, 2007, 35(S1): 133-135. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG2007S1037.htm
    [55] 李少华, 王梅丽, 杜利梅, 等. 叶栅内非定常流动特性的频谱分析[J]. 动力工程学报, 2011, 31(5): 352-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DONG201105008.htm

    LIS H, WANG M L, DU L M, et al. Frequency analysis on unsteady flow characteristics of cascade[J]. Power Engineering, 2011, 31(5): 352-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DONG201105008.htm
    [56] 侯安平, 姜正礼, 凌代军, 等. 亚音压气机平面叶栅内流动的声激励试验研究[J]. 北京航空航天大学学报, 2005, 31(1): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200501013.htm

    HOU A P, JIANG Z L, LING D J, et al. Experimental research of sound excitation on flow of subsonic compressor blade profile in planar cascade tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(1): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200501013.htm
    [57] 弓志强, 陆亚钧, 葛敬东. 环形扩压叶栅流动非定常控制方法的PIV研究[J]. 航空动力学报, 2006, 21(3): 455-460. doi: 10.3969/j.issn.1000-8055.2006.03.004

    GONG Z Q, LU Y J, GE J D. Investigation of unsteady flow control in an annular compressor cascade using PIV[J]. Journal of Aerospace Power, 2006, 21(3): 455-460. doi: 10.3969/j.issn.1000-8055.2006.03.004
    [58] 刘飞, 刘辉, 涂运冲, 等. 非定常尾迹控制叶栅分离研究[J]. 工程热物理学报, 2012, 33(6): 949-952. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201206012.htm

    LIU F, LIU H, TU Y C, et al. Analysis of controlling separated flow on cascade by unsteady wake[J]. Journal of Engineering Thermophysics, 2012, 33(6): 949-952. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201206012.htm
    [59] 杨慧, 何力, 王延荣. 压气机线性振荡叶栅气弹试验研究(一): 非定常气动响应[J]. 航空学报, 2008, 29(4): 795-803. doi: 10.3321/j.issn:1000-6893.2008.04.005

    YANG H, HE L, WANG Y R. Experimental study on aeroelasticity in linear oscillating compressor cascade. part Ⅰ unsteady aerodynamic response[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 795-803. doi: 10.3321/j.issn:1000-6893.2008.04.005
    [60] 杨青真, 施永强, 肖军, 等. 气固耦合振动叶栅非定常流动分析研究[J]. 应用力学学报, 2006, 23(2): 167-171. doi: 10.3969/j.issn.1000-4939.2006.02.001

    YANG Q Z, SHI Y Q, XIAO J, et al. Unsteady flow analysis of vibrating cascade under flow/structure coupled condition[J]. Chinese Journal of Applied Mechanics, 2006, 23(2): 167-171. doi: 10.3969/j.issn.1000-4939.2006.02.001
    [61] BUFFUM D H, CAPECE V R, KING A J, et al. Oscillating cascade aerodynamics at large mean incidence[R]. NASA Technical Memorandum 107247, 1996.
    [62] VOGT D M, FRANSSON T H. Experimental investigation of mode shape sensitivity of an oscillating LPT cascade at design and off-design conditions[C]//Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. 2006. doi: 10.1115/GT2006-91196.
    [63] VOGT D M, FRANSSON T H. A new turbine cascade for aeromechanical testing[C]//Proc of the 16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines. 2002.
    [64] YANG H, HE L. Experiment on linear compressor cascade with 3-D blade oscillation[C]//Proc of the Volume 4: Turbo Expo 2003. 2003. doi: 10.1115/gt2003-38484
    [65] 孙锡九, 张卫伟. 振荡叶栅非定常流场的实验研究[J]. 工程热物理学报, 1988, 9(4): 320-326. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB198804006.htm

    SUN X J, ZHANG W W. Study on unsteady flow field of an oscillating cascade[J]. Journal of Engineering Thermophysics, 1988, 9(4): 320-326. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB198804006.htm
    [66] STIEGER R D, HODSON H P. The transition mechanism of highly-loaded LP turbine blades[C]//Proc of the Volume 5: Turbo Expo 2003, Parts A and B. 2003. doi: 10.1115/gt2003-38304
    [67] HILGENFELD L, PFITZNER M. Unsteady boundary layer development due to wake passing effects on a highly loaded linear compressor cascade[C]//Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air. 2008. doi: 10.1115/GT2004-53186
    [68] 屈骁, 张燕峰, 卢新根, 等. 上游尾迹对高负荷低压涡轮非定常气动性能的影响[J]. 工程热物理学报, 2019, 40(9): 2004-2011. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201909009.htm

    QU X, ZHANG Y F, LU X G, et al. Effects of periodic wakes on unsteady aerodynamic performance of high-lift low-pressure turbine cascade[J]. Journal of Engineering Thermophysics, 2019, 40(9): 2004-2011. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201909009.htm
    [69] 刘火星, 周琨, 邹正平. 涡轮叶栅尾迹对二次流影响的试验研究[J]. 工程热物理学报, 2009, 30(3): 397-401. doi: 10.3321/j.issn:0253-231X.2009.03.010

    LIU H X, ZHOU K, ZOU Z P. The investigation for influence of wake on secondary flow in a turbine cascade[J]. Journal of Engineering Thermophysics, 2009, 30(3): 397-401. doi: 10.3321/j.issn:0253-231X.2009.03.010
    [70] 孙忠民, 鞠凤鸣, 韩万金. 在尾迹扰动下高负荷静叶流动的非定常特性[J]. 汽轮机技术, 2018, 60(1): 31-36. doi: 10.3969/j.issn.1001-5884.2018.01.008

    SUN Z M, JU F M, HAN W J. Research on unsteady flow characteristics of the highly loaded blades cascade under wake interference[J]. Turbine Technology, 2018, 60(1): 31-36. doi: 10.3969/j.issn.1001-5884.2018.01.008
  • 加载中
图(8)
计量
  • 文章访问数:  1402
  • HTML全文浏览量:  329
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-02
  • 修回日期:  2020-12-15
  • 刊出日期:  2021-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日