留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

某型民机低速巡航构型平尾抖振特性风洞试验研究

陈震宇 刘洋 徐亮

陈震宇,刘 洋,徐 亮. 某型民机低速巡航构型平尾抖振特性风洞试验研究[J]. 实验流体力学,2021,35(6):94-99 doi: 10.11729/syltlx20210009
引用本文: 陈震宇,刘 洋,徐 亮. 某型民机低速巡航构型平尾抖振特性风洞试验研究[J]. 实验流体力学,2021,35(6):94-99 doi: 10.11729/syltlx20210009
CHEN Z Y,LIU Y,XU L. Wind tunnel test investigation on buffeting characteristics of horizontal tail of commercial aircraft in low-speed cruise configuration[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):94-99. doi: 10.11729/syltlx20210009
Citation: CHEN Z Y,LIU Y,XU L. Wind tunnel test investigation on buffeting characteristics of horizontal tail of commercial aircraft in low-speed cruise configuration[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):94-99. doi: 10.11729/syltlx20210009

某型民机低速巡航构型平尾抖振特性风洞试验研究

doi: 10.11729/syltlx20210009
详细信息
    作者简介:

    陈震宇:(1993–),男,湖南新化人,硕士,工程师。研究方向:空气动力学,风洞试验。通信地址:上海市浦东新区张江镇金科路5188号上海飞机设计研究院(201210)。E-mail:chenzhenyualonso@live.com

    通讯作者:

    E-Mail:chenzhenyualonso@live.com

  • 中图分类号: V211.71

Wind tunnel test investigation on buffeting characteristics of horizontal tail of commercial aircraft in low-speed cruise configuration

  • 摘要: 提出一种分析平尾抖振的风洞试验方法,通过在某型常规布局民用客机刚性全模的主翼和平尾表面安装超小型脉动压力传感器,测量并分析了主翼及平尾表面脉动压力的时域与频域数据,得到了在主翼尾流及自身流动特性影响下平尾不同截面的脉动压力特性和表面压力分布特性。结果表明:在中小迎角下,主翼出现强分离流动时产生的随机脉动压力激励会引起平尾结构强迫振动,且平尾表面的脉动压力主频与主翼尾流的脉动压力主频相近。在大迎角下,平尾不再受主翼尾流的干扰,其脉动压力特性与自身的分离特性相关,且沿平尾展向向外脉动压力功率谱密度值逐渐降低。
  • 图  1  模型安装图

    Figure  1.  Model installation

    图  2  脉动压力测量点位

    Figure  2.  Measuring points of fluctuation pressure

    图  3  主翼尾缘脉动压力随迎角的变化

    Figure  3.  Variation of fluctuation pressure at trailing edge of main wing with angle of attack

    图  4  平尾30%展向截面近前缘处脉动压力及上表面压力分布随迎角的变化

    Figure  4.  Variation of pressure distribution on horizontal tail surface and fluctuation pressure at leading edge of 30% span-wise section with angle of attack

    图  5  平尾51%展向截面近前缘处脉动压力随迎角的变化

    Figure  5.  Variation of pressure distribution on horizontal tail surface and fluctuation pressure at leading edge of 51% span-wise section with angle of attack

    图  6  平尾92%展向截面近前缘处脉动压力随迎角的变化

    Figure  6.  Variation of pressure distribution on horizontal tail surface and fluctuation pressure at leading edge of 92% span-wise section with angle of attack

    表  1  右平尾上表面13个传感器的位置

    Table  1.   Position of 13 sensors on the upper surface of the right horizon- tal tail

    y/b0.920.510.30
    x/c 0.10 0.10 0.10
    0.20 0.20 0.20
    0.35
    0.54 0.54 0.54
    0.75 0.75 0.75
    下载: 导出CSV

    表  2  右主翼上表面1个传感器的位置

    Table  2.   Position of 1 sensor on the upper surface of right main wings

    y/b对应平尾92%截面位置
    x/c接近主翼面后缘
    下载: 导出CSV
  • [1] MABEY D G. Some aspects of aircraft dynamic loads due to flow separation[J]. Progress in Aerospace Sciences,1989,26(2):115-151. doi: 10.1016/0376-0421(89)90006-7
    [2] ZAN S J,MAULL D J. Buffet excitation of wings at low speeds[J]. Journal of Aircraft,1992,29(6):1137-1143. doi: 10.2514/3.46296
    [3] FLYNN G A,MORRISON J F,MABEY D G. Buffet alleviation on swept and unswept wings at high incidence[J]. Journal of Aircraft,2001,38(2):368-378. doi: 10.2514/2.2771
    [4] 王巍,杨智春,张新平. 扰流激励下垂尾抖振响应主模态控制风洞试验研究[J]. 振动与冲击,2012,31(16):18-21. doi: 10.3969/j.issn.1000-3835.2012.16.004

    WANG W,YANG Z C,ZHANG X P. Fin buffeting alleviation in disturbed flow by buffeting principal modal control method[J]. Jour-nal of Vibration and Shock,2012,31(16):18-21. doi: 10.3969/j.issn.1000-3835.2012.16.004
    [5] 张庆,叶正寅. 一种基于充气气囊的垂尾抖振抑制新方法研究[J]. 工程力学,2014,31(12):234-240. doi: 10.6052/j.issn.1000-4750.2013.06.0564

    ZHANG Q,YE Z Y. Study on a new method for suppression of vertical tail buffeting using inflatable bumps[J]. Engineering Mecha-nics,2014,31(12):234-240. doi: 10.6052/j.issn.1000-4750.2013.06.0564
    [6] 韩冰,徐敏,蔡天星,等. 涡破裂诱导的垂尾抖振数值模拟[J]. 航空学报,2012,33(5):788-795.

    HAN B,XU M,CAI T X,et al. Numerical simulation of vertical tail buffeting induced by vortex breakdown[J]. Acta Aeronautica et As-tronautica Sinica,2012,33(5):788-795.
    [7] ZHANG Q,YE Z Y. Novel method based on inflatable bump for vertical tail buffeting suppression[J]. Journal of Aircraft,2015,52 (1): 367-371. doi: 10.2514/1.c032552
    [8] FERMAN M A,HUTTSELL L J,TURNER E W. Experiments with tangential blowing to reduce buffet response on an F-15 model[J]. Journal of Aircraft,2004,41(4):903-910. doi: 10.2514/1.290
    [9] SHETA E, ROCK S, HUTTSELL L. Characteristics of vertical tail buffet of F/A-18 aircraft[C]//Proc of the 39th Aerospace Sciences Meeting and Exhibit. 2001. doi: 10.2514/6.2001-710
    [10] ZHAO Y H,HU H Y. Active control of vertical tail buffeting by piezoelectric actuators[J]. Journal of Aircraft,2009,46(4):1167-1175. doi: 10.2514/1.39464
    [11] HAUCH R M,JACOBS J H,DIMA C,et al. Reduction of vertical tail buffet response using active control[J]. Journal of Aircraft,1996,33(3):617-622. doi: 10.2514/3.46990
    [12] ZHANG Q,HUA R H,YE Z Y. Experimental and computational investigation of novel vertical tail buffet suppression method for high sweep delta wing[J]. Science China Technological Sciences,2015,58(1):147-157. doi: 10.1007/s11431-014-5702-2
    [13] RICCI S, BERETTA J, FONTE F, et al. Buffet load alleviation on the fin of a high performance training aircraft[C]//Proc of the 58th AIAA/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2017. doi: 10.2514/6.2017-1819.
    [14] PETTIT C L,BROWN D L,BANFORD M P,et al. Full-scale wind-tunnel pressure measurements of an F/A-18 tail during buffet[J]. Journal of Aircraft,1996,33(6):1148-1156. doi: 10.2514/3.47069
    [15] ELMEKAWY A,KANDIL O A,BAYSAL O. F/A-18 twin-tail buffet modeling using nonlinear eddy viscosity models[J]. Journal of Air-craft,2015,53(4):1106-1112. doi: 10.2514/1.C033482
    [16] CANDON M J, LEVINSKI O, ALTAF A, et al. Aircraft transonic buffet load prediction using artificial neural networks[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-0763
    [17] 高杰,张明禄,吕志咏. 双立尾和三角翼之间的气动干扰实验研究[J]. 实验流体力学,2005,19(3):51-57. doi: 10.3969/j.issn.1672-9897.2005.03.011

    GAO J,ZHANG M L,LU Z Y. Investigation of aerodynamic interference between delta wings and twin fins[J]. Journal of Experi-ments in Fluid Mechanics,2005,19(3):51-57. doi: 10.3969/j.issn.1672-9897.2005.03.011
    [18] ZIMMERMAN N, FERMAN M, YURKOVICH R, et al. Prediction of tail buffet loads for design application[C]//Proc of the 30th Struc-tures, Structural Dynamics and Materials Conference. 1989. doi: 10.2514/6.1989-1378
    [19] MEYN L A,JAMES K D. Full-scale wind-tunnel studies of F/A-18 tail buffet[J]. Journal of Aircraft,1996,33(3):589-595. doi: 10.2514/3.46986
    [20] ANDERSON W D,PATEL S R,BLACK C L. Low speed wind tunnel buffet testing on the F/A-22[J]. Journal of Aircraft,2006,43(4):879-885. doi: 10.2514/1.10247
    [21] DANOWSKY B P, SCHULZE P C. Control surface buffet load measurement using aircraft actuators[C]//Proc of the AIAA Atmos-pheric Flight Mechanics Conference. 2016. doi: 10.2514/6.2016-2005
    [22] 管德. 气动弹性试验[M]. 北京: 北京航空学院出版社, 1986.
    [23] ILLI S, FINGSKES C, LUTZ T, et al. Transonic tail buffet simulations for the common research model[C]//Proc of the 31st AIAA Applied Aerodynamics Conference. 2013. doi: 10.2514/6.2013-2510
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  159
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-04
  • 修回日期:  2021-06-21
  • 录用日期:  2021-06-22
  • 网络出版日期:  2021-12-10
  • 刊出日期:  2021-12-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日