留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短钝外形飞行器自由振动动导数试验技术

刘金 宋玉辉 陈兰 王方剑 秦汉 董磊

刘 金,宋玉辉,陈 兰,等. 短钝外形飞行器自由振动动导数试验技术[J]. 实验流体力学,2021,35(6):66-72 doi: 10.11729/syltlx20210010
引用本文: 刘 金,宋玉辉,陈 兰,等. 短钝外形飞行器自由振动动导数试验技术[J]. 实验流体力学,2021,35(6):66-72 doi: 10.11729/syltlx20210010
LIU J,SONG Y H,CHEN L,et al. Free oscillation dynamic derivative test technology of a short-blunt shape vehicle[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):66-72. doi: 10.11729/syltlx20210010
Citation: LIU J,SONG Y H,CHEN L,et al. Free oscillation dynamic derivative test technology of a short-blunt shape vehicle[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):66-72. doi: 10.11729/syltlx20210010

短钝外形飞行器自由振动动导数试验技术

doi: 10.11729/syltlx20210010
详细信息
    作者简介:

    刘金:(1988–),男,黑龙江绥化人,硕士研究生,工程师。研究方向:非定常空气动力学。通信地址:北京市丰台区云岗西路17号中国航天空气动力技术研究院(100074)。E-mail:liujin987@163.com

    通讯作者:

    E-mail:liujin987@163.com

  • 中图分类号: V411.7

Free oscillation dynamic derivative test technology of a short-blunt shape vehicle

  • 摘要: 为研究短钝外形飞行器的动稳定特性,基于自由振动动导数试验方法在1.2 m量级亚跨超声速风洞中建立了动导数测量试验技术。通过新设计的弹性铰链和轴承铰链解决了短钝外形飞行器弹性支撑和低频振动模拟问题。利用新建立的试验装置研究了马赫数、迎角、减缩频率对动稳定特性的影响。在短钝外形飞行器气动力特点下,新设计的弹性铰链能够满足模型支撑和振动需要,轴承铰链的支撑方式可以在风洞中模拟接近实际减缩频率的振动。在亚跨超声速风洞中完成了某短钝外形飞行器俯仰动导数的测量,获取了俯仰动不稳定状态点,为此类飞行器的动稳定特性研究提供了试验基础。
  • 图  1  自由振动动导数试验原理图

    Figure  1.  Principal diagram of free oscillation dynamic derivative test

    图  2  典型衰减曲线

    Figure  2.  Typical decay curve

    图  3  自由振动动导数试验装置

    Figure  3.  Free oscillation dynamic derivative test device

    图  4  俯仰弹性铰链

    Figure  4.  Pitch elastic hinge

    图  5  应力分布和位移云图

    Figure  5.  Stress distribution and deformation cloud diagram

    图  6  轴承铰链

    Figure  6.  Bearing hinge

    图  7  轴承铰链低频振动信号模拟

    Figure  7.  Simulation of low frequency oscillation signal of bearing hinge

    图  8  地面校准

    Figure  8.  Ground calibration

    图  9  三坐标测量仪和系列锥套

    Figure  9.  Three coordinate measuring instrument and series cone sleeve

    图  10  FD-12亚跨超声速风洞

    Figure  10.  Tri-sonic wind tunnel FD-12

    图  11  采集系统和控制系统

    Figure  11.  Acquisition system and control system

    图  12  典型俯仰振动发散曲线和收敛曲线

    Figure  12.  Typical pitch oscillation divergence curve and convergence curve

    图  13  典型俯仰动稳定导数试验结果

    Figure  13.  Test results of typical pitch dynamic stability derivative

    图  14  减缩频率对俯仰动导数的影响

    Figure  14.  The effect of reducing frequency on pitch dynamic derivative

    表  1  典型的短钝外形模型风洞试验载荷

    Table  1.   Typical wind tunnel test load of short-blunt shape model

    单元轴向力
    X/N
    法向力
    Y/N
    俯仰力矩
    Mz / (N·m)
    最大载荷30001006
    下载: 导出CSV

    表  2  不同梁厚度下的刚度、应力、变形角

    Table  2.   Stiffness, stress and deformation angle under different beam thickness

    梁厚度/
    mm
    刚度/
    (N·m·rad–1
    最大应力/
    MPa
    最大理论变形角/(°)
    δ 16.06 2317.0 21.69
    δ+0.25 30.64 1608.0 11.29
    δ+0.50 54.46 1158.0 6.68
    δ+0.75 77.48 917.4 4.44
    δ+1.00 110.99 650.7 2.92
    δ+1.25 221.56 434.4 1.55
    下载: 导出CSV

    表  3  三次重复性试验结果

    Table  3.   Results of three repeated tests

    试验理论迎角10°
    Test 1–0.3936–0.3355–0.3936–0.4126–0.5197
    Test 2–0.3415–0.3768–0.4115–0.3575–0.5685
    Test 3–0.3858–0.3526–0.3795–0.3988–0.5865
    均值–0.3736–0.3550–0.3949–0.3896–0.5582
    标准差0.02810.02080.01600.02870.0346
    下载: 导出CSV
  • [1] WAY D W, POWELL R W, CHEN A, et al. Mars science laboratory: entry, descent, and landing system performance[C]//Proc of the 2007 IEEE Aerospace Conference. 2007. doi: 10.1109/AERO.2007.352821
    [2] REICHENAU D E A. Aerodynamic characteristics of disk-gap-band parachutes in the wake of Viking entry forebodies at Mach numbers from 0.2 to 2.6[R]. AEDC-TR-72-78, 1972. doi: 10.21236/ad0746291
    [3] Petrick D, Davis B, Peregino P, et al. An experimental approach to determine the flight dynamics of NASA's Mars Science Lab Capsule[R]. ARL-TR-6790, 2017.
    [4] EDQUIST K T, HOLLIS B R. Mars science laboratory heatshield aerothermodynamics: design and reconstruction [R]. AIAA 2013-2781, 2013. doi: 10.2514/6.2013-2781
    [5] ALKANDRY H, BOYD I, REED E, et al. Numerical study of hypersonic wind tunnel experiments for Mars entry aeroshells[R]. AIAA 2009-3918, 2009. doi: 10.2514/6.2009-3918
    [6] YOSHINAGA T,TATE A,WATANABE M,et al. Orbital re-entry experiment vehicle ground and flight dynamic test results comparison[J]. Journal of Spacecraft and Rockets,1996,33(5):635-642. doi: 10.2514/3.26813
    [7] 赵梦熊. 载人飞船返回舱的再入气动环境[J]. 气动实验与测量控制,1995,9(4):1-7.

    ZHAO M X. The aerodynamic and aerothermodynamic circumstances of capsule type re-entry vehicle[J]. Aerodynamic Experiment and Measurement & Control,1995,9(4):1-7.
    [8] 赵梦熊. 载人飞船返回舱的动稳定性[J]. 气动实验与测量控制,1995,9(2):1-8.

    ZHAO M X. The dynamic stability characteristics of capsule type Re-entry vehicles[J]. Aerodynamic Experiment and Measurement & Control,1995,9(2):1-8.
    [9] 方方. 神舟飞船返回舱气动设计综述[J]. 航天器工程,2004,13(1):124-131. doi: 10.2514/3.26813
    [10] 马洋,张青斌,丰志伟. 大气环境对火星探测器气动特性影响分析[J]. 航天返回与遥感,2016,37(2):18-25. doi: 10.3969/j.issn.1009-8518.2016.02.003

    MA Y,ZHANG Q B,FENG Z W. Influence of atmosphere condition on aerodynamic characteristics of Mars probe[J]. Spacecraft Recovery & Remote Sensing,2016,37(2):18-25. doi: 10.3969/j.issn.1009-8518.2016.02.003
    [11] 何开锋,和争春. 飞船返回舱跨声速全局稳定性研究[J]. 飞行力学,1999,17(3):34-38. doi: 10.3969/j.issn.1002-0853.1999.03.007

    HE K F,HE Z C. The global stability analysis of reentry capsule transonic flight[J]. Flight Dynamics,1999,17(3):34-38. doi: 10.3969/j.issn.1002-0853.1999.03.007
    [12] 宋玉辉,陈农,秦永明. 亚跨超声速返回舱动稳定特性[J]. 航天返回与遥感,2014,35(2):31-38. doi: 10.3969/j.issn.1009-8518.2014.02.005

    SONG Y H,CHEN N,QIN Y M. Sub-, trans- and super-sonic dynamic stability characteristics for reentry capsule[J]. Spacecraft Recovery & Remote Sensing,2014,35(2):31-38. doi: 10.3969/j.issn.1009-8518.2014.02.005
    [13] 刘伟,赵海洋,杨小亮. 返回舱动态稳定性分析及被动控制方法研究[J]. 中国科学G辑,2010,40(9):1156-1164.

    LIU W,ZHAO H Y,YANG X L. Analysis of dynamic stability and research of passive control method for capsule[J]. Science in China (Series G),2010,40(9):1156-1164.
    [14] 张涵信,袁先旭,叶友达,等. 飞船返回舱俯仰振荡的动态稳定性研究[J]. 空气动力学学报,2002,20(3):247-259. doi: 10.3969/j.issn.0258-1825.2002.03.001

    ZHANG H X,YUAN X X,YE Y D,et al. Research on the dynamic stability of an orbital reentry vehicle in pitching[J]. Acta Aerodynamica Sinica,2002,20(3):247-259. doi: 10.3969/j.issn.0258-1825.2002.03.001
    [15] 杨在山. 载人飞船返回舱的气动特性分析与外形设计[J]. 气动实验与测量控制,1996,10(4):12-18.

    YANG Z S. The configuration and aerodynamic characteristics of manned re-entry capsules[J]. Aerodynamic Experiment and Measurement & Control,1996,10(4):12-18.
    [16] 贾区耀, 陈农, 杨益农, 等. 返回舱跨声速动稳定特性[C]//近代空气动力学研讨会论文集. 2005: 182-187.
    [17] 梁杰,李志辉,李齐,等. 返回舱再入跨流域气动及配平特性数值研究[J]. 空气动力学学报,2018,36(5):848-855. doi: 10.7638/kqdlxxb-2018.0128

    LIANG J,LI Z H,LI Q,et al. Numerical simulation of aerodynamic and trim characteristics across different flow regimes for reentry module[J]. Acta Aerodynamica Sinica,2018,36(5):848-855. doi: 10.7638/kqdlxxb-2018.0128
    [18] 宋威,艾邦成,蒋增辉,等. 返回舱跨声速自由飞行的静动稳定性[J]. 实验流体力学,2019,33(4):89-94. doi: 10.11729/syltlx20180083

    SONG W,AI B C,JIANG Z H,et al. Free flight static and dynamic aerodynamic characteristics for re-entry capsule at transonic speed[J]. Journal of Experiments in Fluid Mechanics,2019,33(4):89-94. doi: 10.11729/syltlx20180083
    [19] 周伟江. 返回舱自由振动跨声速非定常流场数值模拟[J]. 空气动力学学报,2000,18(1):46-51. doi: 10.3969/j.issn.0258-1825.2000.01.007

    ZHOU W J. Numerical simulation of unsteady transonic flow around a free oscillating reentry vehicle[J]. Acta Aerodynamica Sinica,2000,18(1):46-51. doi: 10.3969/j.issn.0258-1825.2000.01.007
    [20] 胡静,宋玉辉,陈农,等. 返回舱动稳定特性风洞试验的影响参数[J]. 航天返回与遥感,2013,34(5):14-19. doi: 10.3969/j.issn.1009-8518.2013.05.003

    HU J,SONG Y H,CHEN N,et al. Study of key parameters for dynamic stability of reentry capsule[J]. Spacecraft Recovery & Remote Sensing,2013,34(5):14-19. doi: 10.3969/j.issn.1009-8518.2013.05.003
    [21] 范洁川. 风洞试验手册[M]. 北京: 航空工业出版社, 2002: 430-440.
    [22] USELTEM B L, WALLACE A R. Damping-in-pitch and drag characteristics of the Viking configuration at Mach numbers from 1.6 through 3[R]. AEDC-TR-72-56, 1972.
    [23] USELTON B L, SHADOW T O, MANSFIELD A C. Damping in pitch derivatives of 120 and 140 degree blunted cones at Mach numbers of 0.3 through 3[R]. AEDC-TR-70-49, 1972.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  730
  • HTML全文浏览量:  328
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-28
  • 修回日期:  2021-04-14
  • 网络出版日期:  2021-12-10
  • 刊出日期:  2021-12-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日