留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机翼上表面喷流偏转被动控制实验研究

汪军 张刘 李斌斌 赵垒 李昌 金熠

汪 军,张 刘,李斌斌,等. 机翼上表面喷流偏转被动控制实验研究[J]. 实验流体力学,2021,35(6):79-85 doi: 10.11729/syltlx20210027
引用本文: 汪 军,张 刘,李斌斌,等. 机翼上表面喷流偏转被动控制实验研究[J]. 实验流体力学,2021,35(6):79-85 doi: 10.11729/syltlx20210027
WANG J,ZHANG L,LI B B,et al. Experimental study of passive control of jet deflection on wing upper surface[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):79-85. doi: 10.11729/syltlx20210027
Citation: WANG J,ZHANG L,LI B B,et al. Experimental study of passive control of jet deflection on wing upper surface[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):79-85. doi: 10.11729/syltlx20210027

机翼上表面喷流偏转被动控制实验研究

doi: 10.11729/syltlx20210027
基金项目: 中国空气动力研究与发展中心基础和前沿技术研究基金(FFTRF20171001)
详细信息
    作者简介:

    汪军:(1991–),男,安徽巢湖人,硕士研究生,助理工程师。研究方向:动力增升技术。通信地址:四川省绵阳市涪城区二环路南段6号(621000)。E-mail:wang07@mail.ustc.edu.cn

    通讯作者:

    E-mail:lzh2607@126.com;

    yjin@ustc.edu.cn

  • 中图分类号: V211.73

Experimental study of passive control of jet deflection on wing upper surface

  • 摘要: 通过静态推力实验,研究了襟翼形状对机翼上表面喷流偏转的影响。在此基础上,通过涡流发生器对喷流偏转进行被动控制,研究了涡流发生器安装位置、安装角和涡流发生器高度对喷流偏转性能的影响。结果表明:喷流偏角在襟翼偏角为30°时达到最大值,并随襟翼半径增大而增大;使用涡流发生器有助于促进喷流附着、增大喷流偏角;安装角和涡流发生器高度是影响喷流偏转性能的关键参数。
  • 图  1  典型USB系统示意图

    Figure  1.  Sketch of typical USB system

    图  2  上表面喷流实验装置

    Figure  2.  Design drawing of jet simulation device

    图  3  喷流模拟装置设计图

    Figure  3.  Design drawing of jet simulation device

    图  4  襟翼设计图

    Figure  4.  Design drawing of flap

    图  5  涡流发生器

    Figure  5.  Vortex generator

    图  6  测量段总压耙布置示意图

    Figure  6.  Layout diagram of total pressure rake in measuring section

    图  7  重复性实验状态照片

    Figure  7.  Photo of repeatability test status

    图  8  巡航状态F1-λ 曲线

    Figure  8.  Thrust resultant force-drop ratio curves of cruise status

    图  9  襟翼角度变化υ-λ曲线(R/h = 1.5)

    Figure  9.  υ-λ curve of flap with different angles (R/h = 1.5)

    图  10  襟翼曲率半径变化υ-λ曲线

    Figure  10.  υ-λ curve of flap with different radius of curvature

    图  11  涡流发生器安装情况

    Figure  11.  VG installation

    图  12  VG安装位置变化υ-λ曲线

    Figure  12.  υ-λ curve of VG with different locations

    图  13  VG安装角度变化时的υ-λ曲线

    Figure  13.  υ-λ curve of VG with different installation angles

    图  14  VG高度变化时的υ-λ曲线

    Figure  14.  υ-λ curve of VG with different heights

    图  15  VG控制影响υ-λ曲线

    Figure  15.  υ-λ curve of VG influence

    图  16  VG控制影响τ-λ曲线

    Figure  16.  τ-λ curve of VG influence

    表  1  TH2003天平载荷及精度表

    Table  1.   Load and precision of TH2003 balance

    分量FxFyFzMxMyMz
    设计载荷1000 N1500 N1000 N300 N·m500 N·m600 N·m
    精度0.02%0.01%0.01%0.02%0.02%0.01%
    下载: 导出CSV
  • [1] 战培国,程娅红,赵昕. 主动流动控制技术研究[J]. 航空科学技术,2010,21(5):2-6. doi: 10.3969/j.issn.1007-5453.2010.05.001

    ZHAN P G,CHENG Y H,ZHAO X. A review of active flow control technology[J]. Aeronautical Science and Technology,2010,21(5):2-6. doi: 10.3969/j.issn.1007-5453.2010.05.001
    [2] HARRISON N, VASSBERG J, DEHAAN M, et al. The design and test of a swept wing upper surface blowing concept[C]// Proc of the 51st AIAA Aerospace Sciences Meeting. 2013. doi: 10.2514/6.2013-1102
    [3] YADLIN Y, SHMILOVICH A. Lift enhancement for upper surface blowing airplanes[C]//Proc of the 31st AIAA Applied Aerodynamics Conference. 2013. doi: 10.2514/6.2013-2796
    [4] JENNETTE T L,AHUJA K K. Noise source location and scaling of subsonic upper-surface blowing[J]. International Journal of Aeroa-coustics,2020,19(3-5):191-206. doi: 10.1177/1475472x20930652
    [5] YAMATO H,OKADA N,BANDO T. Flight test of the Japanese up-per surface blowing STOL experimental aircraft ASKA[J]. Journal of Aircraft,1991,28(10):630-637. doi: 10.2514/3.46075
    [6] RUMSEY C L,NISHINO T. Numerical study comparing RANS and LES approaches on a circulation control airfoil[J]. International Journal of Heat and Fluid Flow,2011,32(5):847-864. doi: 10.1016/j.ijheatfluidflow.2011.06.011
    [7] WIMPRESS J K. Upper surface blowing technology as applied to the YC-14 airplane[C]// Proc of the SAE Technical Paper Series. 1973. doi: 10.4271/730916
    [8] 赵国昌,邢仕廷,宋丽萍,等. 机翼上表面吹气动力增升简化模型[J]. 飞行力学,2018,36(4):39-43.

    ZHAO G C,XING S T,SONG L P,et al. Simplified model of wing upper surface blowing dynamic lift enhancement[J]. Flight Dyna-mics,2018,36(4):39-43.
    [9] XIAO T H,ZHU Z H,DENG S H,et al. Effects of nozzle geometry and active blowing on lift enhancement for upper surface blowing configuration[J]. Aerospace Science and Technology,2021,111:106536. doi: 10.1016/j.ast.2021.106536
    [10] ZHU Z H, XIAO T H, ZHAI C, et al. Numerical study on lift enhancement for upper surface blowing system with powered turbofan engine[C]//Proc of the AIAA Aviation 2019 Forum. 2019. doi: 10.2514/6.2019-3167
    [11] 章荣平,王勋年,黄勇,等. 低速风洞全模TPS试验空气桥的设计与优化[J]. 实验流体力学,2012,26(6):48-52. doi: 10.3969/j.issn.1672-9897.2012.06.011

    ZHANG R P,WANG X N,HUANG Y,et al. Design and optimi-zation of the air bridge for low speed full-span TPS test[J]. Journal of Experiments in Fluid Mechanics,2012,26(6):48-52. doi: 10.3969/j.issn.1672-9897.2012.06.011
    [12] 巫朝君,胡卜元,李东,等. 扁平融合式飞机整体式进/排气试验的推/阻校准方法[J]. 实验流体力学,2019,33(5):88-93. doi: 10.11729/syltlx20180141

    WU C J,HU B Y,LI D,et al. Thrust/drag calibrations for integral inlet and jet testing on a aircraft with blended wing/body[J]. Journal of Experiments in Fluid Mechanics,2019,33(5):88-93. doi: 10.11729/syltlx20180141
    [13] 郝礼书,乔志德,宋文萍. 涡流发生器布局方式对翼型失速流动控制效果影响的实验研究[J]. 西北工业大学学报,2011,29(4):524-528. doi: 10.3969/j.issn.1000-2758.2011.04.005

    HAO L S,QIAO Z D,SONG W P. Experimentally studying effects of different layouts of vortex generator on controlling stall flow over airfoil[J]. Journal of Northwestern Polytechnical University,2011,29(4):524-528. doi: 10.3969/j.issn.1000-2758.2011.04.005
    [14] 李宝山,龚玉祥,张建军,等. 涡流发生器高度和长度对风力机翼型的影响研究[J]. 机电工程技术,2020,49(11):148-150. doi: 10.3969/j.issn.1009-9492.2020.11.044

    LI B S,GONG Y X,ZHANG J J,et al. Research on the influence of height and length of vortex generators on wind turbine airfoil[J]. Mechanical & Electrical Engineering Technology,2020,49(11):148-150. doi: 10.3969/j.issn.1009-9492.2020.11.044
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  359
  • HTML全文浏览量:  171
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-18
  • 修回日期:  2021-05-20
  • 网络出版日期:  2021-12-10
  • 刊出日期:  2021-12-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日