留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短试验段内格栅湍流场风洞试验研究

杨俊伟 杨华 付士凤 宗旺旺 沙成龙

杨俊伟,杨 华,付士凤,等. 短试验段内格栅湍流场风洞试验研究[J]. 实验流体力学,2021,35(6):86-93 doi: 10.11729/syltlx20210042
引用本文: 杨俊伟,杨 华,付士凤,等. 短试验段内格栅湍流场风洞试验研究[J]. 实验流体力学,2021,35(6):86-93 doi: 10.11729/syltlx20210042
YANG J W,YANG H,FU S F,et al. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):86-93. doi: 10.11729/syltlx20210042
Citation: YANG J W,YANG H,FU S F,et al. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):86-93. doi: 10.11729/syltlx20210042

短试验段内格栅湍流场风洞试验研究

doi: 10.11729/syltlx20210042
基金项目: 江苏省研究生科研与实践创新计划项目(KYCX19_2104);扬州市−扬州大学科技合作专项资金计划项目(YZ2019134)
详细信息
    作者简介:

    杨俊伟:(1990–),男,江苏扬州人,讲师。研究方向:风力机流动测量与控制。通信地址:江苏省扬州市邗江区华阳西路196号扬州大学扬子津东校区(225147)。E-mail:yangjunwei@yzu.edu.cn

    通讯作者:

    E-mail:yanghua@yzu.edu.cn

  • 中图分类号: V211.7; TU317.1

Wind tunnel experimental study of the grille-generated turbulence in the short test section

  • 摘要: 为在轴向距离较短的风洞中调制出局部高湍流场,利用风洞试验的方法,对5种格栅(2种方型格栅、3种竖条格栅;3 cm × 3 cm截面铝制型材组装)后的近流场区域进行热线风速仪测量,得到格栅后近场区域的湍流参数分布及各向同性特性,依据相关湍流参数的变化规律,引入无量纲量拟合近场区域湍流强度变化规律经验公式,拟合优度为0.96。分别利用经典和现代谱估计对湍流功率谱密度进行分析,对比发现不同形式的谱估计均能准确预测近场区域湍流功率谱密度,仅在低频处存在偏差。通过改变格栅与测点距离、来流速度以及栅条结构的形式,可以改变格栅湍流场中的能量结构。
  • 图  1  风洞中格栅布置

    Figure  1.  Actual grilles in the wind tunnel

    图  2  格栅示意图

    Figure  2.  Sketch of the grille

    图  3  截面上的测点布置及实测装置

    Figure  3.  Sketche of testing points and the arrangement of probes

    图  4  不同来流风速下的湍流强度衰减变化图

    Figure  4.  Decay of turbulence intensity at different wind speeds

    图  5  各方案湍流强度各向同性对比

    Figure  5.  Isotropy comparison of turbulence intensity with different schemes

    图  6  湍流强度随格栅距离的变化图

    Figure  6.  Turbulence intensity at different positions behind grilles

    图  7  格栅湍流场湍流强度拟合公式与试验结果对比

    Figure  7.  Comparison of experimental data and fitting formula

    图  8  积分尺度随格栅距离的变化图

    Figure  8.  The integral scale at different positions behind grilles

    图  9  采用不同方法的湍流功率谱密度比较

    Figure  9.  Comparison of turbulent PSD by using different methods

    图  10  不同格栅距离的湍流功率谱密度对比

    Figure  10.  Comparison of PSD at different distances

    图  11  不同来流风速的湍流功率谱密度对比

    Figure  11.  Comparison of PSD with different wind speeds

    图  12  不同方案格栅功率谱密度对比

    Figure  12.  Comparison of PSD with different schemes

    表  1  格栅尺寸

    Table  1.   Dimensions of the experiment grilles

    a/cmb/cmc/cmd/cme/cm
    方案1 3 34.0 3 32.0 3
    方案2 3 22.0 3
    方案3 3 15.0 3
    方案4 6 31.4 6 29.8 3
    方案5 6 31.4 3
    对比方案 3 15.0 3 12.6 3
    下载: 导出CSV
  • [1] ALBER J,SOTO-VALLE R,MANOLESOS M,et al. Aerodynamic effects of gurney flaps on the rotor blades of a research wind turbine[J]. Wind Energy Science,2020,5(4):1645-1662. doi: 10.5194/wes-5-1645-2020
    [2] FU S F,ZHANG B E,ZHENG Y,et al. In-phase and out-of-phase pitch and roll oscillations of model wind turbines within uniform arrays[J]. Applied Energy,2020,269:114921. doi: 10.1016/j.apenergy.2020.114921
    [3] WANG Z Y,TIAN W,HU H. A Comparative study on the aerome-chanic performances of upwind and downwind horizontal-axis wind turbines[J]. Energy Conversion and Management,2018,163:100-110. doi: 10.1016/j.enconman.2018.02.038
    [4] SIMMONS L F G,SALTER C. Experimental investigation and analysis of the velocity variations in turbulent flow[J]. Proceedings of the Royal Society of London,1934,145(854):212-234.
    [5] MOHAMED M S,LARUE J C. The decay power law in grid-generated turbulence[J]. Journal of Fluid Mechanics,1990,219:195-214. doi: 10.1017/s0022112090002919
    [6] KITAMURA T,NAGATA K,SAKAI Y,et al. On invariants in grid turbulence at moderate Reynolds numbers[J]. Journal of Fluid Me-chanics,2014,738:378-406. doi: 10.1017/jfm.2013.595
    [7] LYSAK P D,CAPONE D E,JONSON M L. Measurement of the unsteady lift of thick airfoils in incompressible turbulent flow[J]. Journal of Fluids and Structures,2016,66:315-330. doi: 10.1016/j.jfluidstructs.2016.07.018
    [8] 白桦,何晗欣,刘健新,等. 格栅紊流风特性参数模拟规律研究[J]. 振动与冲击,2016,35(22):209-214. doi: 10.13465/j.cnki.jvs.2016.22.031

    BAI H,HE H X,LIU J X,et al. Wind characteristic parameters in grille turbulent flow[J]. Journal of Vibration and Shock,2016,35(22):209-214. doi: 10.13465/j.cnki.jvs.2016.22.031
    [9] 严磊,朱乐东. 格栅湍流场风参数沿风洞轴向变化规律[J]. 实验流体力学,2015,29(1):49-54. doi: 10.11729/syltlx20140075

    YAN L,ZHU L D. Wind characteristics of grid-generated wind field along the wind tunnel[J]. Journal of Experiments in Fluid Mecha-nics,2015,29(1):49-54. doi: 10.11729/syltlx20140075
    [10] 袁星,黄维娜. 光滑通道内格栅湍流特性实验[J]. 航空动力学报,2019,34(1):27-33. doi: 10.13224/j.cnki.jasp.2019.01.004

    YUAN X,HUANG W N. Experiment of grid-generated turbulent in a smooth channel[J]. Journal of Aerospace Power,2019,34(1):27-33. doi: 10.13224/j.cnki.jasp.2019.01.004
    [11] ISAZA J C,SALAZAR R,WARHAFT Z. On grid-generated turbulence in the near and far field regions[J]. Journal of Fluid Me-chanics,2014,753:402-426. doi: 10.1017/jfm.2014.375
    [12] VITA G,HEMIDA H,ANDRIANNE T,et al. Generating atmosphe-ric turbulence using passive grids in an expansion test section of a wind tunnel[J]. Journal of Wind Engineering and Industrial Aero-dynamics,2018,178:91-104. doi: 10.1016/j.jweia.2018.02.007
    [13] SHAO D D,HUANG L,WANG R Q,et al. Flow turbulence characteristics and mass transport in the near-wake region of an aquaculture cage net panel[J]. Water,2021,13(3):294. doi: 10.3390/w13030294
    [14] YASUDA T,GOTO S,VASSILICOS J C. Formation of power-law scalings of spectra and multiscale coherent structures in the near-field of grid-generated turbulence[J]. Physical Review Fluids,2020,5:014601. doi: 10.1103/physrevfluids.5.014601
    [15] 张明月,李永贵,谭文俊,等. 格栅湍流风场风参数变化规律的风洞试验研究[J]. 实验力学,2019,34(3):427-433. doi: 10.7520/1001-4888-17-214

    ZHANG M Y,LI Y G,TAN W J,et al. Wind tunnel experimental study of the variation of wind parameters in grid turbulent wind field[J]. Journal of Experimental Mechanics,2019,34(3):427-433. doi: 10.7520/1001-4888-17-214
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  615
  • HTML全文浏览量:  183
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-18
  • 修回日期:  2021-06-01
  • 网络出版日期:  2021-12-10
  • 刊出日期:  2021-12-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日