留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

7°尖锥高超声速边界层脉动压力实验研究

陈久芬 徐洋 许晓斌 邹琼芬 凌岗 张毅锋

陈久芬, 徐洋, 许晓斌, 等. 7°尖锥高超声速边界层脉动压力实验研究[J]. 实验流体力学, 2023, 37(6): 51-60 doi: 10.11729/syltlx20210054
引用本文: 陈久芬, 徐洋, 许晓斌, 等. 7°尖锥高超声速边界层脉动压力实验研究[J]. 实验流体力学, 2023, 37(6): 51-60 doi: 10.11729/syltlx20210054
CHEN J F, XU Y, XU X B, et al. Pressure fluctuation experiments of hypersonic boundary-layer on a 7-degree half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 51-60 doi: 10.11729/syltlx20210054
Citation: CHEN J F, XU Y, XU X B, et al. Pressure fluctuation experiments of hypersonic boundary-layer on a 7-degree half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 51-60 doi: 10.11729/syltlx20210054

7°尖锥高超声速边界层脉动压力实验研究

doi: 10.11729/syltlx20210054
基金项目: 国家自然科学基金项目(11872370);国家重点研发计划项目(2016YFA0401200)
详细信息
    作者简介:

    陈久芬:(1979—),女,四川宜宾人,硕士研究生,高级工程师。研究方向:高超声速风洞设备研制及气动热实验研究。通信地址:四川省绵阳市涪城区二环路南段6号(621000)。E-mail:1013233946@qq.com

    通讯作者:

    E-mail:zyf63867@163.com

  • 中图分类号: V211.7

Pressure fluctuation experiments of hypersonic boundary-layer on a 7-degree half-angle sharp cone

  • 摘要: 针对半锥角7°尖锥模型,在常规高超声速风洞中开展了边界层脉动压力测量实验,进行了线性稳定性分析,研究了单位雷诺数和马赫数对尖锥边界层转捩位置和边界层稳定性的影响规律。模型长度800 mm,头部半径0.05 mm,实验单位雷诺数0.49 × 107~2.45 × 107 m–1,马赫数5~8,迎角0°。通过红外热图技术和高频脉动压力测量技术获得了模型表面边界层转捩位置和边界层内扰动波能谱分布,利用线性稳定性理论分析了最不稳定波频率和增长率。实验结果表明:在转捩区间可以测量到明显具有不稳定波频谱特征的脉动压力信号,其频率与稳定性理论分析的二模态不稳定波接近,幅值变化趋势也与之类似;随着雷诺数增大,不稳定波出现位置提前,频率增大,转捩位置提前;边界层中不稳定波包含第一和第二模态,马赫数5时,转捩由第一模态主导,马赫数高于6时,由第二模态主导。
  • 图  1  Φ1 m高超声速风洞

    Figure  1.  Φ1 m hypersonic wind tunnel

    图  2  实验模型

    Figure  2.  Test model

    图  3  模型表面温升分布和脉动压力功率谱 (Re= 1.00 × 107 m–1

    Figure  3.  The temperature rise distribution and fluctuating pressure power spectrum of the model surface(Re= 1.00 × 107 m–1

    图  4  模型表面温升沿子午线变化曲线

    Figure  4.  Surface temperature rise of centre lines on model surface

    图  5  模型表面温升分布

    Figure  5.  Surface temperature rise on model surface

    图  6  脉动压力功率谱和线性稳定性分析 (Re = 0.49 × 107 m–1

    Figure  6.  Fluctuating pressure power spectra and linear stability analysis (Re = 0.49 × 107 m–1

    图  7  脉动压力功率谱和线性稳定性分析 (Re= 0.72 × 107 m–1

    Figure  7.  Fluctuating pressure power spectra and linear stability analysis (Re= 0.72 × 107 m–1

    图  8  脉动压力功率谱和线性稳定性分析(Re= 2.45 × 107 m–1

    Figure  8.  Fluctuating pressure power spectra and linear stability analysis (Re= 2.45 × 107 m–1

    图  9  模型表面温升沿子午线变化曲线

    Figure  9.  Surface temperature rise of centre lines on model surface

    图  10  模型表面温升分布

    Figure  10.  Surface temperature rise on model surface

    图  11  模型表面脉动压力功率谱

    Figure  11.  Fluctuating pressure power spectra on model surface

    图  12  第一模态、第二模态的N值分布

    Figure  12.  N-factors of first-mode and second-mode disturbance

    表  1  PCB传感器安装位置

    Table  1.   PCB installation locations

    PCB
    编号
    12345678
    l/mm125205285365445525605685
    下载: 导出CSV
  • [1] 罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报, 2015, 36(1): 357–372.

    LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 357–372.
    [2] SMITH F T. On the first-mode instability in subsonic, supersonic or hypersonic boundary layers[J]. Journal of Fluid Mechanics, 1989, 198: 127–153. doi: 10.1017/s0022112089000078
    [3] MACK L M. Linear stability theory and the problem of supersonic boundary-layer transition[J]. AIAA Journal, 1975, 13(3): 278–289. doi: 10.2514/3.49693
    [4] MACK L M. Boundary-layer linear stability theory[R]. AGARD Report 709, 1984.
    [5] SARIC W S, Reed H L. Crossflow instabilities - theory & technology[R]. AIAA 2003-771, 2003. doi: 10.2514/6.2003-771
    [6] SARIC W S. Görtler vortices[J]. Annual Review of Fluid Mechanics, 1994, 26(1): 379–409. doi: 10.1146/annurev.fl.26.010194.002115
    [7] 刘向宏, 赖光伟, 吴杰. 高超声速边界层转捩实验综述[J]. 空气动力学学报, 2018, 36(2): 196–212. doi: 10.7638/kqdlxxb-2018.0017

    LIU X H, LAI G W, WU J. Boundary-layer transition experiments in hypersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2): 196–212. doi: 10.7638/kqdlxxb-2018.0017
    [8] SCHMISSEUR J D. Hypersonics into the 21st century: a perspective on AFOSR-sponsored research in aerothermo-dynamics[J]. Progress in Aerospace Sciences, 2015, 72: 3–16. doi: 10.1016/j.paerosci.2014.09.009
    [9] 沈清, 袁湘江, 王强, 等. 可压缩边界层与混合层失稳结构的研究进展及其工程应用[J]. 力学进展, 2012, 42(3): 252–261.

    SHEN Q, YUAN X J, WANG Q, et al. Review on the instability structure in compressible boundary layers and mixing layers and its application[J]. Advances in Mecha-nics, 2012, 42(3): 252–261.
    [10] MUIR J, TRUJILLO A. Experimental investigation of the effects of nose bluntness, free-stream unit Reynolds number, and angle of attack on cone boundary layer transition at a Mach number of 6[C]//Proc of the 10th Aerospace Sciences Meeting. 1972. doi: 10.2514/6.1972-216
    [11] STETSON K F, RUSHTON G H. Shock tunnel investiga-tion of boundary-layer transition at M = 5.5[J]. AIAA Journal, 1967, 5(5): 899–906. doi: 10.2514/3.4098
    [12] JULIANO T J, KIMMEL R L, WILLEMS S, et al. HIFiRE-1 boundary-layer transition: ground test results and stability analysis[R]. AIAA 2015-1736, 2015. doi: 10.2514/6.2015-1736
    [13] WILLEMS S, GUELHAN A, JULIANO T J, et al. Laminar to turbulent transition on the HIFiRE-1 cone at Mach 7 and high angle of attack[R]. AIAA 2014-0428, 2014. doi: 10.2514/6.2014-0428
    [14] JULIANO T J, KIMMEL R L, WILLEMS S, et al. HIFiRE-1 surface pressure fluctuations from high Reynolds, high angle ground test[R]. AIAA 2014-0429, 2014. doi: 10.2514/6.2014-0429
    [15] STETSON K F, THOMPSON E R, DONALDSON J C, et al. Laminar boundary layer stability experiments on a cone at Mach 8, part 1: sharp cone[R]. AIAA-83-1761, 1983.
    [16] CASPER K M, BERESH S J, HENFLING J F, et al. Hypersonic wind-tunnel measurements of boundary-layer transition on a slender cone[J]. AIAA Journal, 2016, 54(4): 1250–1263. doi: 10.2514/1.j054033
    [17] ZHANG C H, LEE C. Rayleigh-scattering visualization of the development of second-mode waves[J]. Journal of Visualization, 2017, 20(1): 7–12. doi: 10.1007/s12650-016-0384-4
    [18] ZHU Y D, ZHANG C H, CHEN X, et al. Transition in hypersonic boundary layers: role of dilatational waves[J]. AIAA Journal, 2016, 54(10): 3039–3049. doi: 10.2514/1.j054702
    [19] 常雨, 陈苏宇, 张扣立. 高超声速边界层转捩特性试验探究[J]. 宇航学报, 2015, 36(11): 1318–1323. doi: 10.3873/j.issn.1000-1328.2015.11.014

    CHANG Y, CHEN S Y, ZHANG K L. Experimental investigation of hypersonic boundary layer transition[J]. Journal of Astronautics, 2015, 36(11): 1318–1323. doi: 10.3873/j.issn.1000-1328.2015.11.014
    [20] LIU X L, YI S H, XU X W, et al. Experimental study of second-mode wave on a flared cone at Mach 6[J]. Physics of Fluids, 2019, 31(7): 074108. doi: 10.1063/1.5103192
    [21] 陈久芬, 凌岗, 张庆虎, 等. 7°尖锥高超声速边界层转捩红外测量实验[J]. 实验流体力学, 2020, 34(1): 60–66. doi: 10.11729/syltlx20180172

    CHEN J F, LING G, ZHANG Q H, et al. Infrared thermography experiments of hypersonic boundary-layer transition on a 7° half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 60–66. doi: 10.11729/syltlx20180172
    [22] CHEN X, ZHU Y D, LEE C. Interactions between second mode and low-frequency waves in a hypersonic boundary layer[J]. Journal of Fluid Mechanics, 2017, 820: 693–735. doi: 10.1017/jfm.2017.233
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  283
  • HTML全文浏览量:  100
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-03
  • 修回日期:  2021-10-21
  • 录用日期:  2021-10-21
  • 网络出版日期:  2022-11-15
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日