留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

迎角对翼型边界层影响的实验研究

郝东震 姜楠 唐湛棋 马兴宇

郝东震, 姜楠, 唐湛棋, 等. 迎角对翼型边界层影响的实验研究[J]. 实验流体力学, 2023, 37(2): 16-24 doi: 10.11729/syltlx20210117
引用本文: 郝东震, 姜楠, 唐湛棋, 等. 迎角对翼型边界层影响的实验研究[J]. 实验流体力学, 2023, 37(2): 16-24 doi: 10.11729/syltlx20210117
HAO D Z, JIANG N, TANG Z Q, et al. Experimental study on the effect of angle of attack on airfoil boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 16-24 doi: 10.11729/syltlx20210117
Citation: HAO D Z, JIANG N, TANG Z Q, et al. Experimental study on the effect of angle of attack on airfoil boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 16-24 doi: 10.11729/syltlx20210117

迎角对翼型边界层影响的实验研究

doi: 10.11729/syltlx20210117
基金项目: 国家自然科学基金项目(11732010,11972251,11872272,11902218);中德科学基金国际交流合作项目(GZ1575);气动噪声控制重点实验室开放课题(ANCL20200105)
详细信息
    作者简介:

    郝东震:(1997-),男,河北衡水人,硕士研究生。研究方向:翼型边界层分离。通信地址:天津市津南区海河教育园区雅观路135号天津大学36号力学大楼412室(300354)。E-mail:15297676726@163.com

    通讯作者:

    E-mail:nanj@tju.edu.cn

  • 中图分类号: O353.5

Experimental study on the effect of angle of attack on airfoil boundary layer

  • 摘要: 为深入了解迎角对翼型边界层的影响,开展了SD7003翼型的TR–PIV实验研究。对比了迎角为4°、6°、8°工况下翼型吸力面的平均速度、雷诺切应力等统计量的分布,并对实验数据进行了本征正交分解(POD)模态分析,详细分析了不同工况下各阶模态中的流动结构及其频谱特征。研究发现,随着迎角增大,分离泡位置向翼型前缘移动,分离泡厚度增大;分离泡内部和再附点附近存在较强的剪切运动;再附点附近有交替出现的正、反方向涡结构,而后涡结构随边界层发展不断变化;POD分解的各阶模态的能量大小与其所包含结构的尺度和模态频率有关;随着迎角增大,流场中流动结构尺度增大,流场能量的频域分布由高频向低频移动。
  • 图  1  天津大学低湍流度回流风洞

    Figure  1.  Low turbulence backflow wind tunnel of Tianjin University

    图  2  标定靶

    Figure  2.  Calibration target

    图  3  流线与流向平均速度

    Figure  3.  Streamline and horizontal average speed

    图  4  雷诺切应力分布

    Figure  4.  Reynolds shear stress distribution

    图  5  POD模态累积贡献率

    Figure  5.  Cumulative mode energy of POD modes

    图  6  α = 4°、6°、8°工况下POD分解前4阶模态

    Figure  6.  First four POD modes at α = 4°、6°、8°

    图  7  前4阶POD模态功率谱

    Figure  7.  Power spectrum of the first four POD modes

    表  1  不同迎角下分离泡最大厚度、雷诺切应力最大值、最大雷诺切应力位置及再附点位置对比

    Table  1.   Comparison of the maximum thickness of bubbles, the maximum and locations of Reynolds shear stress, and reattachment points against angles of attack

    αδmax/mmτmax/(N·m−2)xτ,max xr
    2.9579−0.55950.7616L0.7257L
    3.1087−0.62140.5662L0.5224L
    3.7173−0.84610.3977L0.4017L
    下载: 导出CSV
  • [1] 李锋, 白鹏, 石文, 等. 微型飞行器低雷诺数空气动力学[J]. 力学进展, 2007, 37(2): 257–268. doi: 10.3321/j.issn:1000-0992.2007.02.009

    LI F, BAI P, SHI W, et al. Low Reynolds number aerodynamics of micro air vehicles[J]. Advances in Mecha-nics, 2007, 37(2): 257–268. doi: 10.3321/j.issn:1000-0992.2007.02.009
    [2] LIN J C M, PAULEY L L. Low-Reynolds-number separation on an airfoil[J]. AIAA Journal, 1996, 34(8): 1570–1577. doi: 10.2514/3.13273
    [3] LISSAMAN P S. Low-Reynolds-number airfoils[J]. Annual Review of Fluid Mechanics, 1983, 15(1): 223–239. doi: 10.1146/annurev.fl.15.010183.001255
    [4] HORTON H P. Laminar separation bubbles in two and three dimensional incompressible flow[D]. London: Queen Mary University of London, 1968
    [5] ALAM M, SANDHAM N D. Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattach-ment[J]. Journal of Fluid Mechanics, 2000, 410: 1–28. doi: 10.1017/s0022112099008976
    [6] SELIG M, GUGLIELMO J, BROERN A, et al. Experiments on airfoils at low Reynolds numbers[C]//Proc of the 34th Aerospace Sciences Meeting and Exhibit. 1996. doi: 10.2514/6.1996-62
    [7] BREHM C, MACK S, GROSS A, et al. Investigations of an airfoil at low Reynolds number conditions[C]//Proc of the 4th Flow Control Conference. 2008. doi: 10.2514/6.2008-3765
    [8] GROSS A, FASEL H. Numerical investigation of separation for airfoils at low Reynolds numbers[C]//Proc of the 40th Fluid Dynamics Conference and Exhibit. 2010. doi: 10.2514/6.2010-4736
    [9] 白鹏, 李锋, 詹慧玲, 等. 翼型低Re数小攻角非线性非定常层流分离现象研究[J]. 中国科学 (物理学 力学 天文学), 2015, 45(2): 41–52. doi: 10.1360/sspma2014-00212

    BAI P, LI F, ZHAN H L, et al. Study about the non-linear and unsteady laminar separation phenomena around the airfoil at low Reynolds number with low incidence[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(2): 41–52. doi: 10.1360/sspma2014-00212
    [10] ZHOU Y, WANG Z J. Implicit large eddy simulation of low Reynolds number transitional flow over a wing using high-order spectral difference method[C]//Proc of the 40th Fluid Dynamics Conference and Exhibit. 2010. doi: 10.2514/6.2010-4442
    [11] BURGMANN S, BRÜCKER C, SCHRÖDER W. Scanning PIV measurements of a laminar separation bubble[J]. Experiments in Fluids, 2006, 41(2): 319–326. doi: 10.1007/s00348-006-0153-6
    [12] BURGMANN S, DANNEMANN J, SCHRÖDER W. Time-resolved and volumetric PIV measurements of a transitional separation bubble on an SD7003 airfoil[J]. Experiments in Fluids, 2008, 44(4): 609–622. doi: 10.1007/s00348-007-0421-0
    [13] OL M, MCCAULIFFE B, HANFF E, et al. Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities[C]//Proc of the 35th AIAA Fluid Dynamics Conference and Exhibit. 2005. doi: 10.2514/6.2005-5149
    [14] 朱志斌, 刘强, 白鹏. 低雷诺数翼型层流分离现象大涡模拟方法[J]. 空气动力学学报, 2019, 37(6): 915–923. doi: 10.7638/kqdlxxb-2018.0025

    ZHU Z B, LIU Q, BAI P. Large eddy simulation method for the laminar separation phenomenon on low Reynolds number airfoils[J]. Acta Aerodynamica Sinica, 2019, 37(6): 915–923. doi: 10.7638/kqdlxxb-2018.0025
    [15] 朱志斌, 尚庆, 白鹏, 等. 翼型低雷诺数层流分离现象随雷诺数的演化特征[J]. 航空学报, 2019, 40(5): 122528. doi: 10.7527/S1000-6893.2018.22528

    ZHU Z B, SHANG Q, BAI P, et al. Evolution of laminar separation phenomenon on low Reynolds number airfoil at different Reynolds numbers[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122528. doi: 10.7527/S1000-6893.2018.22528
    [16] ZHOU Y, WANG Z J. Effects of surface roughness on separated and transitional flows over a wing[J]. AIAA Journal, 2012, 50(3): 593–609. doi: 10.2514/1.j051237
    [17] KAMARI D, TADJFAR M, MADADI A. Optimization of SD7003 airfoil performance using TBL and CBL at low Reynolds numbers[J]. Aerospace Science and Technology, 2018, 79: 199–211. doi: 10.1016/j.ast.2018.05.049
    [18] 朱玉杰, 孙振生, 张炜, 等. 低Reynolds数翼型绕流主动控制技术[J]. 气体物理, 2017, 2(6): 18–27. doi: 10.19527/j.cnki.2096-1642.2017.06.003

    ZHU Y J, SUN Z S, ZHANG W, et al. Active control of low Reynolds number airfoil flow by implicit large eddy simulation[J]. Physics of Gases, 2017, 2(6): 18–27. doi: 10.19527/j.cnki.2096-1642.2017.06.003
    [19] LUMLEY J L. The structure of inhomogeneous turbu-lence[J]. Atmospheric Turbulence and Radio Wave Propa-gation, 1967: 166–178. doi: 10.1007/BF00271656
    [20] BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25(1): 539–575. doi: 10.1146/annurev.fl.25.010193.002543
    [21] SIROVICH L. Turbulence and the dynamics of coherent structures. I. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561–571. doi: 10.1090/qam/910462
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  124
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-03
  • 修回日期:  2021-11-19
  • 录用日期:  2021-11-22
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日